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Abstract— Misdosing medications with sensitive therapeutic
windows, such as heparin, can place patients at unnecessary
risk, increase length of hospital stay, and lead to wasted
hospital resources. In this work, we present a clinician-in-the-
loop sequential decision making framework, which provides an
individualized dosing policy adapted to each patient’s evolving
clinical phenotype. We employed retrospective data from the
publicly available MIMIC II intensive care unit database,
and developed a deep reinforcement learning algorithm that
learns an optimal heparin dosing policy from sample dosing
trails and their associated outcomes in large electronic medical
records. Using separate training and testing datasets, our model
was observed to be effective in proposing heparin doses that
resulted in better expected outcomes than the clinical guidelines.
Our results demonstrate that a sequential modeling approach,
learned from retrospective data, could potentially be used at
the bedside to derive individualized patient dosing policies.

I. INTRODUCTION

Deviations from established treatment protocols in com-
plex clinical environments, such as the intensive care unit
(ICU), are a common and necessary component of effective
treatment. While some of these deviations are errors [1],
many more are innovative adjustments made by clinicians
to adapt treatments to the individualized (perceived) needs
of patients. Clinicians often reference clinical context, pa-
tient preference, provider bias, prior training, local medical
practice, and lack of (or conflicting) randomized clinical
trials (RCTs)-based evidence as the driving factors of the
variability in treatment approach.

Medication dosing is one example of treatment policy
where deviations from the norm are common, and sometimes
useful. However, som medications have highly sensitive
therapeutic windows, making them easily over- or under-
dosed. Mismanagement of such drugs can (1) drive up costs
by unnecessarily extending hospital length of stay (2) reduce
hospital productivity by requiring additional follow-up inter-
ventions to correct for mistakes and, (3) in some cases, place
already frail patients at risk of additional complications [2],
[3].

Unfractionated Heparin (UH), is one example of such
a medication - leading to increased risk of bleeding if
overdosed, and increased risk of clot formation if underdosed
[4]. The same risks exist in the case of Warfarin, (a drug
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used by approximately 20 million patients in the United
States alone) which is estimated to be incorrectly dosed in
a staggering one-third of patients [5]. The sensitivities of
patients to these drugs, and many other drugs with misdosing
consequences, demands the development of robust decision
support tools, which will consider a greater breadth and
depth of factors that influence patient outcomes. Importantly,
such tools should be designed to minimize the number
of treatment iterations required to bring patients to the
therapeutic state as defined by the caretaker, not to dictate
those definitions themselves.

As retrospective clinical archives continue to grow in
both breadth (e.g. through multi-center initiatives) and depth
(using higher resolution data), access to variations in patient
characteristics, and corresponding treatment decisions, has
provided an unprecedented opportunity to generate tools that
may learn optimal personalized treatment policies from the
data. In this work, we present a reinforcement learning (RL)
algorithm for learning actionable policies to minimize dos-
ing errors for dosing medications with sensitive therapeutic
windows. For this article we focus on the dosing of UH as
a useful illustrative example.

RL is particularly well-suited for the medication dosing
problem given the sequential nature of clinical treatment
- where multiple treatment decision are performed without
immediate knowledge of effectiveness. Indeed, the lack of
a one-to-one correspondence between actions and outcomes
makes it difficult to assign credit or blame to individual ac-
tions along the way to an intermediate or terminal outcome.
Moreover, the effect of interventions for a given patient can
be non-deterministic, and attempting to predict the effects of
a series of treatments over time only raises to this uncertainty.

Within the RL literature this type of problem is known
as a credit assignment task and may be modeled using a
Markov decision processes (MDP) for probabilistic inference
over time, given non-deterministic action effects. In our
case specifically, we use a partially observable Markov
decision process (POMDP), which extends a standard MDP
by modeling an internal belief about patient state and their
expected response to interventions. In this work, we provide
approximate dosing solutions in both discrete action spaces
[6].

II. METHODS

In many clinical settings, UH dosing begins with the intra-
venous administration of a weight-based dosage of heparin
[3]. After 4 to 6 hours, a laboratory test of blood clotting
is performed to determine the activated partial thrombo-
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plastin time (aPTT). This test serves as feedback (or a
reward/reinforcer in the RL literature) for the clinicians.
Given the feedback, a decision is made to increase, decrease
or maintain the heparin dosage (see Fig. 2, panel (a)) until
the next aPTT measure.

Our goal is to infer an optimal dosing strategy that
accounts for both the aPTT level, and evolving patient
physiological condition. To accomplish this inference, we
train a RL model using the time series of several common
clinical measurements within the patient’s electronic medical
record (EMR).

The RL model utilizes a cohort of N patients,
with associated multivariate time series of laboratory
values Y , clinical actions a, and associated rewards r:
{(Y (1)

M×T1
, a

(1)
1×T1

, r
(1)
1×T1

), · · · , (Y (N)
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(N)
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)},
where the n-th time series Y (n) may be of length Tn and
include M channels, a(n) can be a discrete (categorical) or
continuous time series of actions of length Tn, and r(n) is a
one dimensional time series of rewards of length Tn, with
up to Tn − 1 missing values (delayed rewards).

Within the RL framework [7], a reward is a measure of the
immediate utility of an action in a given state (a summary
of all we can know about the agent’s environment). The
RL agent’s objective is to maximize its expected long-term
reward by following a policy π : S → A, where S denotes
the state-space, and A denotes the set of possible actions.
Thus, our goal is to simultaneously learn the state sequence
s(n) associated with each time-series Y (n), and an optimal
policy π∗(s(n)t ) that suggests an action a(n)t with maximum
expected long-term reward. We define a clinician-in-the-loop
policy, as a control policy that takes into account the action of
a clinician as well as her patient’s response when suggesting
a new action. In this setting, a clinician may choose to
approve or overwrite the action suggested by the RL agent
at any given point in time.

A. Dataset
Following Ghassemi et al. [8], we extracted data for

4470 patients from the publicly available Multiparameter
Intelligent Monitoring in Intensive Care (MIMIC) II database
[9] that received a heparin intravenous infusion at some point
during their ICU stay (randomly assigned to 80% training
and 20% testing sets).

We extracted up to 48 hours of data per patient, starting
from the time of first heparin administration. Our extracted
features included a comprehensive laboratory measurements:
heparin dose level and aPTT measurements calculated over
the four hours prior to the selected time (t− 4 : t, in hours),
arterial carbon dioxide level (CO2), heart rate (HR), heparin
dose (t − 4 : t, in hours), albumin, systolic and diastolic
arterial blood pressure (SBP and DBP), bilirubin, creatinine,
Glasgow Coma Score (GCS), hematocrit, hemoglobin, Inter-
national normalized ratio of prothrombin (INR), blood PH,
platelet count, prothrombin time, respiration rate, oxygen
saturation of arterial blood (SA02), daily Sequential Organ
Failure Assessment (SOFA) scores, temperature, troponin,
urea, and white blood cell count (WBC). Additionally,
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Fig. 1. A discriminative HMM (DHMM) with an added Q-learning
layer consisting of a two-layer neural network (aka, a Q-Network [6]).
For clarity, we only show the Q-network on the last node, but otherwise
at each point in time the Q-network estimates the long-term value of
each of the K possible actions given the marginal state probability
vectors.

we collected the following dichotomous features: ethnicity
(white/non-white), ICU service type (surgical/medical), gen-
der, transfer from another hospital, pulmonary embolism and
obesity. We also extracted patient age and weight.

The therapeutic range of anticoagulation was defined as
an aPTT between 60 and 100 seconds [8].

B. Exclusion Criteria and Pre-Processing
We excluded all patients which were transferred from

another institution. All feature data were re-sampled at an
hourly rate (where multiple measurements within the same
hour window were replaced by their median value). To
account for missing hourly values, we utilized sample-and-
hold interpolation which we consider the most practical
form of interpolation at the bedside, given the non-random
(and generally unknown) nature of the missing data in most
clinical settings.

C. Reinforcement Learning
The objective of the RL medication dosing agent is to

learn a dosing policy that maximizes the overall fraction of
time a given patient stays within his/her therapeutic aPTT
range. We constructed a RL reward function reflecting this
objective: rt = 2

1+e−(aPTTt−60) − 2
1+e−(aPTTt−100) − 1. This

function assigns a maximal reward of one when a patients
aPTT value is within the therapeutic window which rapidly
diminishes towards a minimal reward of -1 as the distance
from the therapeutic window increases.

Since the actual physiological state of the patient is at best
only partially observed, the agent has to infer both the state
of the patient and an optimal policy from sample trajectories
of its interaction with the environment, i.e., the recorded data
within the EMR.

1) Discriminative Learning for State Estimation: In the
most general case, one may use a dynamic Bayesian network
(DBN) or a recurrent neural network (RNN) to infer a
sequence of hidden states associated with the observed time
series of clinical parameters. For simplicity, here we utilize
a discriminative hidden Markov model (DHMM) for state
estimation (as shown in Fig. 1). Since we are interested
in inferring states that can assist in learning a policy for
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maximizing the long-term reward, we employ gradient-based
supervised learning [10] to learn the parameters of the
DHMM (collectively called β) so to directly minimize the
RL cost function, as described next.

2) Discrete Action Spaces: Watkins’s Q-learning algo-
rithm [11] works by learning an action-value function that
provides the expected long-term reward of taking a given
action in each state. The Q-function for a state-action pair is
defined as [7]:

Q(s
(n)
t , a

(n)
t ) = maxπE[r

(n)
t + γr

(n)
t+1 + γ2r

(n)
t+2 + · · · ],

where γ (∈ [0, 1]) is a discount factor, and the maximum
is taken over all possible policies π. Within the fitted Q-
learning framework [12] the Q-function is represented by a
neural network with weights W . A parametrized version of
Eq. (1) using dynamic-programming can be written as [7]:

Q∗(s
(n)
t , a

(n)
t ;W ) = Es′ [r

(n)
t + γmaxa′∈AQ∗(s′, a′;W )],

where s(n)t is a shorthand for the marginal Pβ(s
(n)
t |y

(n)
1:t ),

and the subscript β is used to make the dependence of the
state estimate on the parameters of the DHMM explicit.
The first term within the expectation operator in the above
equation is the immediate reward of taking action a

(n)
t in

state s
(n)
t , and the second term is the discounted long-

term reward the agent can expect by taking the best action
thereafter. Given the optimal Q-function, the optimal policy
is given by π∗(s(n)t ;W ) = argmaxa′∈AQ

∗(s
(n)
t , a′;W ). The

Q-learning algorithm updates the weights W by minimizing
the following cost function [6]:

L(Wi+1) =
1

2|Ni|
∑
n∈Ni
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2,

where v(n)t (Wi) = r
(n)
t + γmaxa′∈AQ(s

(n)
t+1, a

′;Wi) is the
expected value of the state-action pair under the current Q-
function at time t and for the example n within the current
training batch (Ni ⊆ {1, · · · , N}). Note that, we have
replaced Q∗(., .;W ) by its best current estimate Q(., .;W );
this is a form of bootstrapping. The gradient of this cost
function with respect to the weights Wi+1 is given by:

∂L(Wi+1)
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∑
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.

3) Optimization: The gradient of the RL cost function
with respect to the network weights (W ) can be further
backpropagated through the DHMM parameters (β) (or
any DBN or RNN model used for state estimation) [10].
The resulting combined gradients can be directly plugged
into an optimization package, such as MATLAB’s minFunc
[13], to optimize all model parameters simultaneously (i.e.,
end-to-end supervised training). When optimizing over a
large patient cohort, we found that a stochastic optimization
approach—using mini-batches with a few iterations per batch
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Fig. 2. Panel (a): each heparin dosing trial starts with an initial
dosing of heparin (stemmed open circles) followed by sequential
adjustments over the next 24-48 hours upon availability of new
aPTT test results (middle plot) and according to a hospital dosing
protocol/policy (πH ). The prescribed actions by the trained RL
agent (πRL) are superimposed (stemmed asterisks). Panel (b):
Quantifying dosing performance (accumulated reward; mean and
standard errors) over 8 hour time bins (× 6 bins = 48 hours), and
distance from RL policy (color-coded): |πH − πRL|. These results
shows that, consistently over time, adherence to the RL policy (Red
lines; distance of zero) results in the highest accumulated reward.

and a momentum term—yielded improved generalization
performance with significant speed up. Hyperparameters of
the DHMM and the neural network representing the policy
(such the number of layers and nodes) were tuned using
Bayesian Optimization [14].

III. RESULTS, DISCUSSION AND FUTURE WORK

We discretized the heparin values using six quantile inter-
vals to define a discrete set of actions. Fig. 2 (a) shows an
example of heparin dosing (mean-normalized) by a clinician,
and the corresponding recommended dosing of the RL agent.
Note that the clinician initially over-doses the patient, as
reflected in the aPTT measurements 6 hours through the trial.
The situation worsens till 15 hours through the trial when a
corrective action is finally made; that is, taking the patient
completely off the heparin for one hour, followed by three
hours of consecutive heparin administration at the population
mean level (zero level), and finally patient is completely
taken off of heparin over the next five hours (19-23 hours).
However, the corrective action results in an under-dosing
of the patient, as reflected by the last aPTT measurement
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(22 hours through the trial). In comparison, the trained RL
agent’s recommendation starts slightly above the population
mean for heparin and then converges to the population mean,
which is likely to bring patients within their therapeutic range
more quickly.

To further test this hypothesis, we grouped each instance
of heparin administration according to its distance from
the dosage recommended by our trained RL agent. Thus,
a distance of zero indicates that the clinically administered
dose matched the RL agent’s recommendation. The testing
set results presented in Fig. 2(b) shows that, on average
and consistently over time, following the recommendations
of the RL agent (red line) results in the best long-term
performance. In fact, while the expected reward over all
dosing trajectories in our cohort is negative, patients whose
administered heparin trajectory most closely followed the RL
agent’s policy could on average expect a positive reward after
just a few adjustment.

To our knowledge this is the first successful application
of deep reinforcement learning to the problem of medication
dosing in the ICU. Application of RL to design of clinical
trials and adjustment of clinical treatments have been previ-
ously suggested in the literature [15], [16], [17]. However,
the previous works do not combine state estimation and
RL training via end-to-end optimization. In our experience,
feeding the raw laboratory values to the RL algorithm did
not perform well. This is likely due to the high-dimensional
nature of clinical observations often made at the bedside.
State estimation provides a summary of these measurements
in terms of a few compact state variables that are continu-
ously updated as more measurements become available.

In spite of the great success of deep reinforcement learning
in other fields [6], application of this technique to clinical
problems has been limited, since large clinical datasets with
granular temporal data are often scarce. With the advent of
big clinical datasets and more efficient algorithms, including
state estimation, better initialization, and optimization, we
may start to tackle the problems we face in this domain. The
results presented in this work illustrates that a data-driven
approach to heparin dosing performs better, on average, than
the state-of-the-art in clinical practice.

The example presented here should be taken as illustra-
tive. Whether the suboptimal heparin dosing we observed
were from intentional actions on the part of the clinician,
mistakes, or simply due to a lack of adherence to hospital
guidelines are beyond our ability to investigate with the
dataset at hand. This points at one of the major challenges
of retrospective analysis of clinical big data; the rational for
treatment decisions are often unknown, and some features
which may be important for understanding outcomes may
be missing, most likely not at random. Nevertheless, one
major advantage of retrospective analysis is the low cost,
high volume, and scalability. More importantly, retrospective
data often provides diverse representations of the critically
ill, including members of the population which might be
too ill to include in a clinical trials. Hence, there are some
areas of research that, in the interest of ethics, can only

be carried out retrospectively. Nevertheless, the application
of machine learning and in particular sequential decision
making techniques to medicine is still at its infancy, and we
believe advances in deep reinforcement learning will play
an important role in the future of precision medicine and
achieving a learning health care system [18].
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