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Abstract— Robust navigation and mining of physiologic time
series databases often requires finding similar temporal patterns
of physiological responses. Detection of these complex physi-
ological patterns not only enables demarcation of important
clinical events but can also elucidate hidden dynamical struc-
tures that may be suggestive of disease processes. Some specific
examples where this physiological signal search may be useful
include real-time detection of cardiac arrhythmias, sleep staging
or detection of seizure onset. In all these cases, being able to
identify a cohort of patients who exhibit similar physiological
dynamics could be useful in prognosis and informing treatment
strategies. However, pattern recognition for physiological time
series is complicated by changes between operating regimes and
measurement artifacts. Here we briefly describe an approach
we have developed for distributed identification of dynamical
patterns in physiological time series using a switching linear
dynamical system (SLDS). We present a fast and memory-
efficient algorithm for learning and retrieval of phenotypic
dynamics in large clinical time series databases. Through
simulation we show that the proposed algorithm is at least an
order of magnitude faster that the state of the art, and provide
encouraging preliminary results based on real recordings of
vital sign time series from the Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC-II) database.

I. INTRODUCTION

Pattern recognition in time series data has a broad range of
applications from finance to medical informatics, however,
robust algorithms for finding predictive patterns in long
sequences of nonstationary multivariate time series are sparse
[1]. We recently developed a machine learning algorithm for
identification of dynamical patterns in multivariate cohort
time series of physiological systems [2]. A central premise of
our approach was that even within heterogeneous patient co-
horts there are common phenotypic dynamics that a patient’s
vital signs may exhibit, reflecting underlying pathologies or
temporary physiological state changes (e.g., postural changes
or sleep/wake related changes in physiology), and used a
switching linear dynamical system (SLDS) to model these
dynamics. While previous works on the application of SLDS
to physiological data [3] primarily relied on hand-annotated
training data and expert knowledge for parameter estimation
in a small cohort (tens of patients), we utilized a fully
automated approach based on the switching Kalman filter
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(SKF) algorithm [4] on a large cohort involving hundred of
patients [5]. This approach allowed for automatic learning of
a collection of time series dynamics within a patient cohort
and simultaneous segmentation of each time series in terms
of those dynamics, using an iterative procedure known as the
expectation maximization (EM) algorithm [4].

However, EM does not scale well to long sequences and
large time series cohorts. In this work, we propose a singular
value decomposition (SVD)-based algorithm for learning and
inference in the SLDS models, which is at least an order of
magnitude faster than the EM algorithm. Moreover, given
that the SLDS framework allows for defining a notion of
”similarity” among multivariate physiological time series
based on their underlying shared dynamics [2], we propose
a search engine for multivariate physiological time series,
which allows for fast indexing and retrieval of dynamical
patterns in large time series cohorts.

II. METHODS
Assume we are given a collection of N nonstationary mul-

tivariate time series {y(1),y(2), · · · ,y(N)} and the associated
outcomes {O(1),O(2), · · · ,O(N)}, where the n-th time series
y(n) is of length T (n), and may include M channels. Here
we consider the case where the corresponding label O(n)

is a binary or multinomial outcome variable.Our objective
is to learn shared features across the cohort for time series
classification.

A. Learning Switching Dynamics in Cohort time series

Switching Linear Dynamical Systems: The switching lin-
ear dynamical system (SLDS) [4] models time series us-
ing two layers of hidden state evolution. The generative
model is as follows: a discrete latent process for each time
series s(n)t ∈ {1, · · · ,J} evolves according to a Markovian
dynamic with initial distribution π(n) and J× J transition
matrix Z. Each of the n series has an unobserved continuous
state variable x(n)t ∈ RD that evolves according to linear dy-
namics which are determined by the current latent state s(n)t ,
and produces observations y(n)t . The jth linear system has
state dynamics A( j), observation matrix C( j), state noise
covariance Q( j), and observation noise covariance R( j):

x(n)t = A(s(n)t )x(n)t−1 +vt vt ∼N (0,Q(s(n)t )) (1)

y(n)t =C(s(n)t )x(n)t +wt wt ∼N (0,R(s(n)t )). (2)

We refer to these state-specific dynamics together as ∆( j) =
{A( j),Q( j),C( j),R( j)} (also known as a mode), and we use
Θ = {{∆( j)}J

j=1,Z,π
(n)} to denote the set of all model

parameters defining the SLDS.
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EM for Parameter Learning in SLDS models: A compre-
hensive treatment of the EM algorithm for switching Kalman
filters (SKF) is presented in Murphy (1998) [4]. In practice
we neither know the set of switching variables nor the
parameters that define the modes. EM is a two-pass iterative
algorithm: (1) in the expectation (E) step we obtain the
expected values of the latent variables {{x(n)t ,S(n)t }Tn

t=1}N
n=1

using a modified Kalman smoother [4], and (2) in the maxi-
mization (M) step we find the model parameters {Θ( j)}J

j=1,
Markov dynamics Z and initial conditions π(n) that maximize
the expected complete data log likelihood. In our implemen-
tation of the EM algorithm, we achieve shared dynamics by
pooling together all subjects’ inferred variables in the M step.
Iteration through several steps of the EM algorithm results
in learning a set of J shared modes and a global transition
matrix Z for all the patients.

Practical inference in SKF is approximate, since the exact
inference requires tracking an exponentially increasing num-
ber of states. Since starting from time t = 1, each of the J
states has to be propagated forward using J possible modes,
resulting in J2 states at t = 2, and so on. In practice, the J2

modes are often collapsed down to J states using moment
matching [4]. Therefore, each inference step of the EM
algorithm requires T × J2 evaluations of the Kalman filter
per time series, which has computational and memory com-
plexity of O(D3) and O(D2) per time-step, respectively. To
obtain smoothed estimates a backward pass through the data
using the Rauch-Tung-Striebel (RTS) smoother is required,
with similar computational complexity. Moreover, cost of
the forward-backward algorithm for inference in the discrete
hidden Markov model (HMM) is O(J2 × T ). Finally, the
HMM layer requires T ×J2 calculations of likelihood of the
observations, with each likelihood evaluation requiring cal-
culations of the inverse and determinant of the measurement
covariance matrices, which is O(M3) in the dimension of
observations. When the observation dimension is very large
(e.g., modeling pixel values video sequences, firing rates of
hundreds to thousands of simultaneously recorded neurons,
or observations of several vital signs across multiple time-
scales), the cost of running the SKF becomes prohibitively
large. Here we propose an algorithm that avoids running a
Kalman filter altogether, and significantly reduces the overall
computational complexity of inference and learning in the
SLDS.

B. Singular Value-based System Identification

It is well-known that the choice of the matrices in a given
mode ∆( j) is not unique, in the sense that any rotation of
the state vector xt results in a different set of matrices, but
leaves the input-output relationship unchanged. Our work
is motivated by a specific parametrization of a state-space
model under the assumption that M >>D, and rank(C) =D,
and choosing a canonical model that makes the columns of
the C orthogonal: CTC = ID, where ID is the identity matrix
of the size D×D [6]. This parametrization is particularly
useful when dealing with high-dimensional observations. For
completeness, we first summarize the algorithm presented

by Soatto et al. [6] for learning such state-space models,
and then provide an extension to the case of the switching
linear dynamical system. Let Y = [y1, · · · ,yT ] with T > M,
X = [x1, · · · ,xT ], and W = [w1, · · · ,wT ]. The algorithm of
Soatto et al. finds the best C and X minimizers of the
Frobenius norm of W such that

Y =CX +W ; C ∈ RM×D; CTC = ID. (3)

This is done by calculating the singular value decomposition
(SVD) of Y = UΣV T and setting C = U and X = ΣV T .
Moreover, it can be shown that Vt = E(xtxT

t ) asymptotically
approaches Σ2. The major cost of the algorithm presented in
the previous section is running the SVD on a M×T matrix.
This is particularly costly when dealing with a cohort of N
(> 1000) time series, each consisting of several thousands of
samples.

C. Extension to the Switching Linear Dynamical System

We next extend the algorithm of Soatto et al. to the
problem of inference and learning in SLDS models. We pro-
pose a iterative procedure that alternates between inferring
hidden layer variables and updating the model parameters
(henceforth, we refer to this algorithm as SVD-SLDS).

1) Updating Model Parameters: Assuming an approx-
imate segmentation of all the time series is known, i.e.,
{s(n)t , t = 1, · · · ,T (n)}N

n=1, we make use of the fact that
if UΣV T is the SVD of Y then columns of U are the
eigenvectors of YY T , and the non-zero singular values of
Y (diagonal elements of Σ) are the square roots of the non-
zero eigenvalues of YY T . This allows us to do eigenvalue
decomposition on M×M matrices rather than singular value
decompositions on M×T (n) matrices.

Let Y (n)
i = Y (n)diag(PΘ(s

(n)
1 = i), · · · ,PΘ(s

(n)
T = i)), where

Y (n)
i is a weighted observation matrix for the i-th mode. The

average covariance matrix for the i-th mode is given by:

P(i) = 1/N
N

∑
n=1

Y (n)
i Y (n)

i
T
/T (n)

i ,

and T (n)
i = ∑

T (n)

t=1 PΘ(s
(n)
t = i) is the effective size of the n-

th weighted time series for the i-th mode. Note that P(i)

is M×M. Let the eigenvalue decomposition of of P(i) =

U (i)Λ(i)U (i)T
, where Λ = diag(λ1, · · · ,λM) are eigenvalues

in descending order. We can solve for parameters of the i-th
mode:

C(i) = [u(i)1 , · · · ,u(i)D ] , (4)

R(i) =
M

∑
m=D+1

λ
(i)
m u(i)m u(i)m

T
, (5)

X (n)
i = C(i)T

Y (n) , (6)

V (n)
i = diag(λ1, · · · ,λD) , (7)

A(i) =
1
N

N

∑
n=1

(X (n)
i,τ+1X (n)

i,τ
T
)(X (n)

i,τ X (n)
i,τ

T
)−1 , (8)

Q(i) =
1
N

N

∑
n=1

ετ ε
T
τ /T (n) , (9)
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where X (n)
i,τ = [x1, · · · ,xT (n)−1], X (n)

i,τ = [x2, · · · ,xT (n) ], and ετ =

X (n)
i,τ+1−A(i)X (n)

i,τ . Note that, if D is not known a priori, an
empirical determination of the state dimension can be made
by choosing D as the cutoff where the eigenvalues λm drop
below a threshold.

2) Inference Step: Since we estimated the continuous
latent variables in the previous step, we only need to run
the forward-backward algorithm [4] to estimate PΘ(s

(n)
t ) for

all time series (for clarity we drop the index n):

Lt( j) = Likelihood(yt , xt , Vt , C( j), R( j)) (10)

et = yt −C( j)xt ,

St = C( j)VtC( j)T
+R( j) , (11)

Lt( j) = N (et ; 0, St) .

M f
t (i) = Forward(M f

t−1, Ms
t+1, Z) (12)

a f
t ( j) = Lt( j)M f

t−1( j)Z(i, j) ,

M f
t ( j) = a f

t ( j)/∑
j′

a f
t ( j′) ,

for t = 1, · · · ,T . Note, M f
t (i) = Prob(st = i|y1:t), with the

initial condition M f
0 = π .

Ms
t (i) = Backward(M f

t , M f
t+1, Ms

t+1, Z) (13)

as
t (i, j) = M f

t (i)Z(i, j)Ms
t+1( j)/M f

t+1( j) ,

Ms
t (i) = ∑

j
as

t (i, j) ,

for t = T − 1, · · · ,1. Note, Ms
t (i) = Prob(st = i|y1:T ), with

the initial condition Ms
T = M f

T . This has the computational
complexity of O(NT J2), however, since the inference is
performed independently we can parallelize this step on N
cores, with a cost of O(T J2) per core. Moreover, substituting
Eq. (7) into Eq. (11) we see that the innovations covariance
matrix St is independent of time, and therefore both the
inverse and determinants of the covariance matrices across
all modes can be calculated before entering the loop; this
has the computational complexity of O(JM3) as apposed to
O(T JM3). This reduction in complexity is a direct conse-
quence of choosing an orthogonal basis for the state-space
model (see Eq. (3)), which results in asymptotically diagonal
and time-invariant state covariance matrices. However, it
is still possible to obtain a O(T JD3) complexity in the
general case where the state covariance matrices (and thus
the innovation covariance matrices) are allowed to change
over time (this is particularly useful when D << M). This
can be achieved by applying the matrix inversion and the
determinant inversion lemmas:

S −1
t = R( j)−1−R( j)−1

C( j)
γ
( j)
t
−1

R( j)T
R( j)−1

(14)∣∣St
∣∣ =

∣∣∣γ( j)
t

∣∣∣ ∣∣Vt
∣∣ ∣∣R( j)

∣∣ , (15)

where γ
( j)
t =V−1

t +C( j)T
R( j)−1

C( j).

3) Initialization: We used a clustering approach to initial-
ize all J modes. This was done by selecting short random
segments from each time series, and fitting a state-space
model – as described previously – to each segment. Next,
using an appropriate similarity kernel on the space of linear
dynamical systems [7] we constructed a similarity matrix
among the fitted dynamical systems, and performed spectral
clustering with the number of clusters set to J [8]. Next, all
the time series belonging to the same cluster were pooled
together and were fit to a single linear dynamic system. This
step was repeated for all J clusters.

III. EXPERIMENTS AND RESULTS

4) Simulated Time Series with Switching Dynamics:
We simulated 100 bivariate time series with a duration of
300 samples and dynamic switching among four modes
(J = 4). All four dynamical modes were stable bivariate
(M = 2) autoregression (AR) models of order two. We used
two different Markov transition matrices (Z1 and Z2) with
different stationary distributions to create a balanced binary
classification problem.

We assumed the state dimension and the number of modes
are known a priori and compared the performance of the
SKF and SVD-SLDS algorithms for classifying the time
series as belonging to one of two classes. After 5 iterations
of EM, we used the average time spent within each mode
(i.e., time average of s(n)t ) as the feature vector to represent
each time series, and used a logistic regression classifier
(with elastic net regularization) to perform classification. All
reported results are 10-fold cross-validated (random draws;
70% training and 30% testing), and the performances are
based on the held-out testing sets. We report time complexity
of each algorithm for both learning and inference in units of
seconds per time series (so, the actual time of learning is
70 and 30 times the numbers reported in the table below for
learning and inference, respectively).

Performance of the SKF-based inference and learning
versus the proposed SVD-SLDS technique is summarized
in Table I. Both algorithms perform equally well (AUC of
0.91 for SKF versus 0.90 for SVD-SLDS), however SVD-
SLDS is roughly an order of magnitude faster than the SKF
algorithm. Fig. 1 provides a qualitative comparison of the
marginal probabilities of each mode using SKF (panel B)
versus SVD-SLDS (panel C).

A. MIMIC Dataset

We used a subset of the blood pressure (BP) time series
from the MIMIC II database [9], as described in Lehman
et al. [5]. Briefly, the cohort included ICU patients with
at least 8 hours of continuous minute-by-minute invasive
BP trends during the first 24 hours of their ICU stays.
Patients with more than 15% missing or invalid (i.e., outside
physiologically plausible bounds of 20 to 200 mmHg for
mean pressures) BP samples were excluded, resulting in
453 patients ( with 16% hospital mortality). The data set
contained approximately 9,700 hours of minute-by-minute
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Fig. 1. An example of the simulated time series (only one channel is
shown) is shown in panel A. The inferred marginal probabilities of each
of the four modes using the SKF and the proposed technique after five
iterations of EM are shown in panels B and C, respectively. For a given
mode, lighter colors in the grey-scale indicate higher probabilities.

systolic BP measurements (20.2 hours per patient on average,
or 1212 samples).

The results presented in Table I are based on using a state
dimension D = 3 and J = 10 modes, with 5 iterations of EM.
Here we do not report the performance of the SKF algorithm
since the related experiments did not complete after 8 hours
of runtime. However, we compared the performance of
the SVD-SLDS against the switching vector autoregressive
(SVAR) technique of Lehman et al. [5] on the same dataset,
which shows negligible difference in performance (AUC
of 0.69 versus 0.70). Moreover, the average computational
time for leaning on the training dataset (316 time series)
and inference on the testing set (137 time series) were 4.8
minutes and 0.3 minutes, respectively.

IV. DISCUSSION AND FUTURE DIRECTION

We presented a novel technique for learning and inference
in an SLDS model for cohort time series. The algorithm
allows for fast and efficient discovery of shared multivariate
dynamical patterns within a large time series cohort. Our
simulation studies and an experiment based on real data
indicates that the proposed algorithm fares well against the
alternative EM-based technique, with at least an order of
magnitude improvement in run-time. The SLDS framework
is particularly advantageous over other methods (such as
the SVAR [5]) when the observation dimension is much
larger than the state dimension. Such high-dimensional time
series arise in many neuro/physiological recordings involving
multi-sensor measurements of a sparse set of underlying
sources (e.g., dense electroencephalogram recordings). The
inferred continuous latent variables can be interpreted as a
low-dimensional representation of the original time series.

Given the sheer volume of multivariate time-series
recorded in modern clinical databases, inference over so-
phisticated models and extraction of multivariate dynamic
features are often computationally intensive. The algorithm
proposed here can be employed as a fast and memory-
efficient technique for dynamics-based time series search,

TABLE I
COMPARISON OF SKF AND SVD-SLDS

Method performance (AUC) Learning (sec) Inference (sec)
Simulations (N=100)

SKF 0.91±0.07 1.462±0.084 0.226±0.006
SVD-SLDS 0.90±0.07 0.151±0.016 0.018±0.001

MIMIC (N=453)
Li-wei et al. [5] 0.70±0.20 – –
SVD-SLDS 0.69±0.11 0.926±0.051 0.135±0.024

Performances are based on 10-fold cross-validated area under the
curve (AUC) performance on the testing folds. Time complexity for
learning and inference are presented in units of seconds per time-series.

with two main components. First, learning of multivariate
dynamics and construction of a library of phenotypic dy-
namical behaviors - this step also involves segmentation and
indexing of time-series within the database. Second, given
the learned library, the inference step will involve assignment
of newly presented patient time series to the most likely
dynamic cluster, with the aim of event classification and pre-
dictive monitoring. This would allow a clinician to compare
incoming patients to those which exhibited similar dynamical
activity in the past. We are currently implementing such a
search engine using a Hadoop MapReduce framework. Under
this framework, one can run the inference for each time-
series independently on a separate mapper to calculate the
partial latent variable posteriors. Similarly, the maximization-
step yields itself to an efficient parallelization over the
number of dynamical modes that constitute our library of
possible dynamical behaviors (using M reducers running in
parallel). Our ultimate aim in showcasing such tool is to
facilitate and encourage utilization of high-resolution time
series features in clinical studies by the the greater research
community.
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