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Abstract— Medication dosing in a critical care environment is
a complex task that involves close monitoring of relevant physio-
logic and laboratory biomarkers and corresponding sequential
adjustment of the prescribed dose. Misdosing of medications
with narrow therapeutic windows (such as intravenous [IV]
heparin) can result in preventable adverse events, decrease
quality of care and increase cost. Therefore, a robust recommen-
dation system can help clinicians by providing individualized
dosing suggestions or corrections to existing protocols. We
present a clinician-in-the-loop framework for adjusting IV
heparin dose using deep reinforcement learning (RL). Our main
objectives were to learn a new IV heparin dosing policy based
on the multi-dimensional features of patients, and evaluate the
effectiveness of the learned policy in the presence of other
confounding factors that may contribute to heparin-related side
effects. The data used in the experiments included 2598 inten-
sive care patients from the publicly available MIMIC database
and 2310 patients from the Emory University clinical data
warehouse. Experimental results suggested that the distance
from RL policy had a statistically significant association with
anticoagulant complications (p < 0.05), after adjusting for the
effects of confounding factors.

I. INTRODUCTION

Heparin is an effective intravenous (IV) anticoagulant used
to prevent the formation of blood clots in susceptible patients.
However, due to IV heparin’s narrow therapeutic window,
its administration requires frequent monitoring and dose
adjustment to prevent adverse events associated with supra-
or sub- therapeutic anticoagulation. Latent endogeneous and
exogeneous factors are continuously affecting patient’s abil-
ity to maintain normal blood coagulation. Yet, dosing and
sequential adjustment of IV heparin is often performed by
following clinical protocols based on a limited number of
clinical measurements, collected at the initiation of care (e.g.
weight, history of complications and intermittent monitoring
of coagulation factors). In practice, deviations from such
protocols are common due the complex and dynamic nature
of patient’s physiology [1]. While the rationale for deviations
from established protocols are often not directly reported
in electronic medical records (EMRs), EMRs may provide
indirect evidence of the work-flow related factors, drug-
interactions, and other complex scenarios that informed the
decision to deviate from clinical guidelines.
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In recent years, there has been a growing number of
clinical studies both through prospective trials as well as
retrospective analysis of electronic medical records [2], [3],
[4] aimed at refining the heparin dosing protocols. The
prospect of learning optimal dosing protocols from retro-
spective clinical data is particularly intriguing in a time
when 90% of health providers now store detailed electronics
medical records [5], allowing algorithmic approaches to
leverage heterogeneity in both dosing behavior, and patient
characteristics, when identifying ’optimal’ policies. Indeed,
retrospective analyses are a necessary precursor to motivate
prospective trials, which produce smaller data archives, at
higher cost, and must necessarily exclude patients at ’high-
risk’ for adverse outcomes (e.g. the elderly). Important
previous work has found associations between observational
trial results and RCTs [6].

Retrospective analysis starts by extracting sequential dose-
response data, laboratory and other clinical data, as well as
outcome variables corresponding to adverse events. How-
ever, dose-response data is often sparse, since blood draws
are required to measure the relevant biomarkers (such as
’Heparin Level’, ’activated Partial Thromboplastin Time’ or
aPTT, and ’Activated Clotting Time’ or ACT). This feedback
delay is akin to the problem of delayed rewards and credit
assignment in the Reinforcement Learning (RL) literature,
wherein the rewards associated with a state-action pair can
occur terribly delayed [7]. As a consequence, such reward
signals will only very weakly affect all temporally distant
states that have preceded it, resulting in a difficulty to assign
the appropriate credit to a given state-action pair.

In this work, we utilize the framework of reinforcement
learning in continuous state-action spaces to learn a better
policy for heparin dosing from observational data. Further-
more, we aim to statistically assess if the learned policy
is in fact better than the existing hospital protocols. When
evaluating a new policy, we perform multivariate regression
analysis to test the hypothesis that adherence to the learned
RL policy is significantly associated with improved outcomes
after adjusting for confounding factors.

II. METHOD

A. Data

Data for this multicenter-study was collected from two
sources: The first dataset was collected from the publicly
available Medical Information Mart For Intensive Care
(MIMIC) dataset [8], the second dataset was collected from
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the Emory Hospital intensive care unit data. Of note, inclu-
sion of two separate datasets was meant to show the gen-
eralizability of the proposed framework, but not necessarily
a set of model coefficients. We identified 2598 patients in
MIMIC database who received IV heparin infusion during
their ICU stay, and who had activated partial thromboplastin
time measures (aPTT), which is used in MIMIC to monitor
the response of patients. We extracted high resolution data
including laboratory results, and time-lagged aPTT and hep-
arin dose measurements over the three hours period prior to
the selected time (t-1h : t-3h). Additionally, we collected the
following covariates: gender, age, weight, ICU unit, ethnicity,
history of pulmonary embolism and the overall Sequential
Organ Failure Assessment (SOFA) score. The dosing pro-
tocol at the Beth Isreal Medical Deaconess Medical Center
(where MIMIC was collected) defines a threapeutic aPPT as
between 60 and 100.

The second dataset included 2310 ICU patients from
Emory Healthcare (Atlanta, GA). All patients were admitted
between Jan. 2013 and Dec. 2015 and received IV heparin
during their admission. Collected data included demographic
information (gender, ethnicity, etc.), laboratory testing result
and the heparin level, which is used in Emory hospital as
a biomarker of dose response. Additionally, we obtained
the healthcare system’s weight-based IV heparin infusion
protocol to help determine the level of adherence to the
official dosing protocol. The dosing protocol at Emory was
divided into low-standard and high-standard according to a
patient’s indication for IV heparin.

For both datasets, we determined the patient’s history of
medical condition using daily International Classification of
Diseases-9 (ICD-9) codes (assigned by the clinical team)
[9]. From the daily diagnostic codes assigned by the bedside
clinical team, we extracted the timestamps of complications
related to bleeding instance, blood clots including pulmonary
embolism (PE) and deep vein thrombosis (DVT). These com-
plications were used as a prediction target for the analysis.
Sample-and-hold was used to handle missing data when
applicable. In all other cases, mean imputation was used by
calculating the mean value of each feature across the training
data, and utilizing the same values on the testing data.

B. Reinforcement learning

1) Policy Architecture: The methods in this study are
based on the deep deterministic policy gradient approach
(DDPG) described by Lillicrap et al. [10]. DDPG is a tech-
nique designed for RL in the continuous action domain. The
algorithm combines Deterministic Policy Gradient (DPG)
[11] and Deep Q-Networks (DQN) [12]. Let (st, at) denote
the state and action pair at the time-step t, and πθ(st, at) =
P (at|st, θ) represent the policy which provides a parametric
conditional probability distribution over the space of possible
actions given a state st, and model parameters θ. In our
setting, the state may represent the set of measurements
that characterizes a patient at a given time, or a lower
dimensional representation of such measurements. The action
is the continuous dosage of the drug, and the policy is a

deterministic function, at = µθ(st), that corresponds to the
behavior of the RL dosing protocol. For our purposes, the
form of µθ is a neural network that maps from the state of
the patient to the appropriate dose of heparin. Finally, the
objective of learning is to find a policy that maximizes the
discounted long-term accumulated reward (across) associated
with a state-action pair, denoted by R(st, at) = rt+γrt+1+
γ2rt+2 + · · ·+ γT−trT . Therefore the goal of learning is to
maximize the objective function:

J(θ) = Es

[ ∫
a

πθ(st, a)R(st, a)da
]

The gradient of the above objective function can be calcu-
lated by the policy gradient theorem [13]:

∇θJ(θ) = Es,a[∇θ log πθ(s, a)Qπw(s, a)]

where πθ(s, a) is known as the actor network and Qπw(s, a)
is known as the critic network (see Figure 1). The actor
follows a deterministic policy to suggest an action. The critic
estimates the long-term value of this action:

Qπw(st, µθ(st)) = Eµ[R(st, µθ(st))]

and utilizes a TD (Temporal-Difference) error signal (the
difference between the left and right-hand sides of the above
equation) to drive the learning in both the actor and the
critic. The deterministic policy gradient theorem provides
the update rule for the weights of the actor network, while
the critic network is updated from the gradients obtained
from the TD error signal. In the online setting, the RL
agent executes a series of actions following an exploration-
exploitation policy and observes the resulting rewards
and state transitions. Each mini-batch of size N includes
examples of the form D = {s(n)t , a

(n)
t , r

(n)
t , s

(n)
t+1}Nn=1.

Learning occurs through mini-batch gradient decedent
by following the policy gradient. For a more detailed
explanation of the DDPG algorithm and description of the
learning procedure see Lillicrap et al. [10].

2) Reward Function: For each dataset, We defined a func-
tion that translates the measured outcomes into a continuous
reward ∈ [−1, 1].

• MIMIC: Rewards were assigned according to the fol-
lowing a scaling function:

rt =
2

1 + e−(aPTTt−60)
− 2

1 + e−(aPTTt−100)
− 1

which assigns a value close to 1 to aPTT values that
fall within the therapeutic range of 60-100, and negative
values elsewhere.

• Emory: We generated a reward function for each dosing
standard (low and high). For patients on the low-
standard protocol, reward was defined as:

r
(low)
t =

2

1 + e−10(HLt−0.3)
− 2

1 + e−10(HLt−0.5)
−0.5

For patients on the high-standard protocol, reward was
defined as:

r
(high)
t =

2

1 + e−10(HLt−0.5)
− 2

1 + e−10(HLt−0.7)
−0.5
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C. Assessing Policy Value

Following Hirano and Imbens [14], the adjusted treatment
effect can be measured by estimating the treatment-outcome
curve with a regression models. More specifically, the condi-
tional expectation of the outcome under different IV heparin
dosing can be estimated using the observed outcomes, which
corresponds to the potential outcome under the level of
treatment received:

E[Y (t)|X = x] = E[Y |T = t,X = x]

where Y is the outcome, X is the vector of patient’s covari-
ates and T is the continuous heparin treatment level. We used
regression estimators to model the outcome as a function of
the treatment level and covariates. With parametric models
for the outcome, we can further analyze the expected value
of the outcome under different levels of treatment.

In order to evaluate the adjusted treatment effect, we
need to model the treatment-outcome curve using a re-
gression model. Let us first define the notion of distance
from RL policy as the difference between the recommended
dose of IV heparin (by the RL agent) and actual dose
of IV heparin given to the patient over an entire dos-
ing trajectory: Distance = Et[recommended dose(t) −
administered dose(t)]. We define five distance levels (in-
dexed as −2,−1, 0, 1, 2) by binning the continuous distance
into five quantiles, which we interchangeably call the treat-
ment level. For instance, a treatment level of zero corresponds
to receiving the exact dose as recommended by the RL agent,
while a treatment level of −2 means that the administered
dose was higher than the RL agent’s recommendation.

D. Clinician-in-the-loop framework

While traditionally RL has been successful in online
learning scenarios (with either real-world or simulated en-
vironments), clinical applications of RL have been limited
to learning from offline data. If an accurate pharmacological
drug dose-response model is available, an RL agent can
learn an optimal policy through exploration-exploitation and
execution of various dosages. However, when it comes
to real world clinical scenarios, random exploration over
the action space during the training phase is not realistic.
Therefore, instead of generating new episodes by interacting
with environment, a potential approach to learning is to
utilize real episodes from retrospective clinical data. Again,
the retrospective data is organized into tuples of the form
{s(n)t , a

(n)
t , r

(n)
t , s

(n)
t+1}Nn=1, where the actions correspond to

the actual dose of medication given to the patient. One
interpretation of this setting is that the RL agent only
recommends an action, and it’s up to the clinician to either
take the recommendation or execute an alternative action.
We call this a clinician-in-the-loop framework, as depicted
in Figure 1. In this scheme, regardless of the action of the
clinician, the agent learns by analyzing the trajectory of
states, actions, and associated rewards. As long as there is
sufficient variability in the actions performed the agent will
be able to learn from historical data to arrive at a better
policy. However, the true value of a new policy can only

Critic
Value network

Actor
Policy network Clinicians

Environment	State

Executed
dosing

Reward

Predicted
dosing

RL agent

TD error

Fig. 1. Clinician-in-the-loop framework. The Actor network suggests
a dose, which is presented to a clinician who in-turn either accepts the
recommendation or executes a different dose. The Critic network receives
the corresponding reward from the environment and produces a TD error
for updating the network.

be determined with respect to meaningful clinical outcomes,
and after adjusting for confounding factors. We utilize the
framework of adjusted treatment effects (also known as
causal treatment effects) to assess the value of a new policy,
where a new policy plays the role of a treatment that only a
subset of the population may receive.

E. Results

In Figures 2, we provide an example of the heparin dosing
decisions by the clinical team, compared to the official
weight-based protocols, and the suggestions of the RL agent.

In Figure 3, we depict the reward associated with the
five distance levels defined above(-2, -1, 0, 1 2) on the

Fig. 2. Emory dosing: heparin level and therapeutic range; clinicians
dosing (green stem with circle), protocol dosing (red stem with cross) and
recommendation dosing (blue stem with cross).
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Feature β p-value [95% Interval]
Constant -0.3503 0.000 [-0.37,-0.32]
|Distance From Policy| -0.1235 0.000 [-0.15,-0.10]
Gender -0.0108 0.376 [-0.03,0.01]
Age 0.001 0.887 [-0.02,0.03]
Weight -0.0166 0.193 [-0.04,0.0]
PE 0.0093 0.438 [-0.01,0.03]
SOFA -0.0090 0.454 [-0.02,-0.00]

TABLE I
REGRESSION ON REWARD (MIMIC). SOFA: SEQUENTIAL ORGAN

FAILURE ASSESSMENT. PE: PULMONARY EMBOLISM

Emory datasets. We observe here that the average reward of
distance level zero (corresponding to exactly following the
RL agent’s recommendation) provides the greatest reward.
Furthermore, as the distance between the recommended dose
and the actual dose increases, there is a decline in the average
accumulated reward. These observations suggest that our RL
agent is providing reasonable and useful recommendations
for the patients within the Emory dataset. These findings
were consistent across the MIMIC dataset.

While these results are encouraging, one may argue that
patients in distance 0 class are simply healthier than other
patients. In order to adjust for confounding factors when
assessing the relationship between treatment levels and out-
comes, we performed a multiple linear regression analysis,
with the continuous variable ’average reward’ as the outcome
of interest, to determine whether the treatment level (or
distance from policy) is as significant (p-value < 0.05). The
regression results using the MIMIC and Emory data are
shown in Table I and II.

The other evaluation was focused on the under antico-
agulation (i.e., thrombus/embolus) and over anticoagulation
(i.e., bleeding) complications in Emory ICU data. In Figures
4 and 5 and Tables IV and III, we illustrate the results of
a logistic regression model used to predict the presence or
absence of complications (thrombus/embolus and bleeding)
given distance from policy, after adjusting for confounding
factors using the Emory dataset.

For the under anticoagulation complications, the distance

Fig. 3. Association between distance from policy and average accumulated
reward (Emory data): mean and standard deviation

Feature β p-value [95% Interval]
Constant 0.0032 0.397 [ -0.004 , 0.011 ]
|Distance From Policy| -0.0198 0.001 [ -0.030 , -0.008 ]
History Of Clot 0.0074 0.224 [ -0.005 , 0.019 ]
History Of Bleed 0.0048 0.431 [ -0.007 , 0.017 ]
Weight 0.0004 0.952 [ -0.011 , 0.012 ]
Age 0.0059 0.306 [ -0.005 , 0.017 ]
SOFA -0.0029 0.605 [ -0.014 , 0.008 ]

TABLE II
REGRESSION ON REWARD (EMORY DATA)

Feature β p-value [95% Interval]
Constant -2.3724 0.000 [-2.522,-2.223]
Distance From Policy 0.0146 0.001 [0.007,0.022]
History Of Clot 0.1156 0.073 [-0.011,0.242]
Weight 0.0740 0.282 [-0.061,0.209]
Age -0.1416 0.053 [-0.285,0.002]
SOFA -0.1059 0.202 [-0.269,0.057]

TABLE III
REGRESSION ON CLOTTING COMPLICATIONS (EMORY DATA)

Feature β p-value [95% Interval]
Constant -3.0050 0.000 [ -3.200 , -2.810 ]
Distance From Policy -0.0282 0.000 [ -0.036 , -0.021 ]
History Of Bleed -0.1086 0.303 [ -0.315 , 0.098 ]
Weight -0.0112 0.912 [ -0.210 , 0.187 ]
Age 0.0027 0.978 [ -0.190 , 0.196 ]
SOFA 0.2492 0.001 [ 0.104 , 0.395 ]

TABLE IV
REGRESSION ON BLEEDING COMPLICATION (EMORY DATA)

from policy is the only significant variable with a p-value
smaller than 0.05, and a positive regression coefficient indi-
cating an increase in risk of under anticoagulation complica-
tions with the increasing distance from the RL policy (i.e.,
receiving less heparin than recommended by the RL agent).
For the over anticoagulation complications, a decrease in
distance from policy (i.e., receiving more heparin than rec-
ommended by the RL agent) is associated with an increase
in bleeding probability. The second variable with significant
p-value is the coagulation SOFA scores which is directly

Fig. 4. Association between distance from policy and percentage of clotting
complication (Emory data): mean and standard deviation
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Fig. 5. Association between distance from policy and percentage of
bleeding complication (Emory data): mean and standard deviation

related to platelets count, and is positively associated with
over anticoagulation complications (as expected).

III. DISCUSSION AND CONCLUSION

The major finding of this study is that the DDPG method
can learn an improved policy for IV heparin dosing using
retrospective data. We utilized the adjusted treatment effect
framework to show that the learned policy is significantly
associated with improved outcomes even after adjusting for
confounding factors. The multiple linear regression and lo-
gistics regression analysis revealed that the distance between
recommended dosing and clinicians’ dosing is significantly
associated with total accumulated reward and coagulation-
related complications. These findings indicate that following
the RL agent’s recommendations, on average, would have
likely resulted in improved clinical outcomes.

The DDPG method, which operates in continuous state
and action spaces, does not require arbitrary discretization
of actions, which was used in prior studies that utilized Q-
learning [2]. However in practice, the continuous nature of
the actions often results in smooth changes in the RL agent’s
recommendations. While this may be an advantage if the RL
agent successfully learns to never over-dose the patients, in
the cases when such events do happen, the clinical protocols
dictate an immediate stop of IV heparin infusion. In our
setting, the RL agent was not able to suggest such rapid
transitions, which may be a consequence of the way negative
and positive rewards were defined in this study. For instance,
designing asymmetric rewards based on patients underlying
risk factors may be a potential approach to mitigate this issue.
For instance, one may increase the penalty (negative reward)
associated with over-dosing in a patient at risk for bleeding
complications.

Our future work includes a closer examination (via chart
review) of the underlying causes of occasional large dis-
crepancies between the recommended and actual dosing of
heparin. We hypothesize that the underlying causes of such
discrepancies are multifactorial, which may include con-
founding clinical factors that were not adequately captured
by the structured data within the EMR, and work flow-related
issues that may have slowed down a timely response to an
overshoot or an undershoot.

In conclusion, our preliminary results suggests that the
RL framework allows for learning improved IV heparin
dosing policies from retrospective data by considering the
high-dimensional static and dynamic observations that are
commonly available in electronic medical records. The ad-
justed treatment effect framework in association with the
RL modeling approach provides a powerful tool for learning
medication recommendation and surveillance models from
retrospective clinical data. Further advancement in this clin-
ical space has the potential to improve personalized delivery
of care, reduce anticoagulation-related complications, and
reduce healthcare expenditures.
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