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Introduction

1967: 1MB = $1 Million
2017: 1MB = $0.02

As costs diminished, storing data
became more cost-effective than
managing or curating it and

modern-day "Big Data" was born

https://www.computerworld.com/article/3182207/data-storage /cw50-data-storage-goes-from-1m-to-2-cents-per-gigabyte.html


https://www.computerworld.com/article/3182207/data-storage/cw50-data-storage-goes-from-1m-to-2-cents-per-gigabyte.html

Introduction

More data and computation
power led to resurgence of
neural network approaches
("Deep Learning”)

Deep methods proved capable
of automatically learning data
representations that out-
performed feature-engineering
approaches In key areas:
vision, speech, translation
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https://www.xenonstack.com/blog/log-analytics-with-deep-learning-and-machine-learning




Introduction

There Is Increasing Interest In
Big Data, Machine Learning and
Artificial Intelligence In the health
and behavior contexts

Model can more naturally detect depression in
conversations

Neural network learns speech patterns that predict depression in chnical interviews.

Rob Matheson | MIT News Office
August 28, 2018




Introduction

Healthcare spending at almost
20% of GDP in the US and
automation may help reduce
costs, while improving quality of
care.

Health data is being collected at
a unprecedented scale and
resolution




Introduction

Healthcare spending at almost
20% of GDP In the US and Documents ¥
automation may help reduce
costs, while improving quality of Code (GitHub) O
care.

Health data |S belng CO"ECted at If you use MIMIC data or co?u;r;izr:;l;:ork, please cite the following
a unprecedented scale and
MIMIC-III, a freely accessible critical care database. Johnson AEW,

reSOIUtIO n. Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B,
Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI:
10.1038/sdata.2016.35. Available from:
http://www.nature.com/articles/sdata201635



Technical Challenges

For health/behavioral
applications methods must be:
Interpretable, generalizable and
support (not control) decisions

‘Deep’ techniques are powerful,
but there Is still room for growth


https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b

Technical Challenges

For health/behavioral
applications methods must be:
Interpretable, generalizable and /
support (not control) decisions N O

‘Deep’ techniques are powerful,
and there is still room for growth



https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b

Practical Opportunities

Current health data enable
reactionary optimization of care

Using data outside the hospital
(social + wearable), we may clarify
causal factors of disease, and
allow for proactive approaches




Today’s Talk

1. Data collection: _ _ .
Tool to translate paper data from hospital spreadsheets into digital form

2. Decision support:
Method to prognosticate coma outcomes after cardiac arrest

3. Optimal Control:
Al for passive monitoring of narrative mood during conversations

4. Moving Forward
Future directions, and opportunities for collaboration
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An Open-Source Tool for the
Automated Transcription of
Paper Spreadsheet Data

As presented in IEEE Big Data 2017



Data collection:
A 5,000 year tradition

3000 B.C.: Sumerians kept
clay records on property,
transactions, and
marriages
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Data collection
medical records on
prominent patients



Data collection:
A 5,000 year tradition

2017 AD: Hospitals keep
records on just about
everything




Data collection:
A 5,000 year tradition

2017 AD: So much

Interesting information Is
still locked within paper
records
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Importance:

90% of US hospitals still
maintain paper archives

Data transcription costs
time and money, and
transcribing sensitive
patient data costs even
more




A.l. 1s an Ideal solution:

1. Cheap

2. Scalable

3. Maintains privacy



Challenges:

1. data is heterogeneous
within spreadsheets: different
Ink, cell colors, handwriting

2. data Is heterogeneous
across spreadsheets:
different formats, cell size

3. data often breaks ‘rules’:
circling, cross through,
underlining, spilling outside
borders, etc.

-
. e

o

f
1 1 it J \
~l e o '

- ;.E;l».; 23]
LR

A
Sl




Challenges:

1. data is heterogeneous
within spreadsheets: different
Ink, cell colors, handwriting

2. data Is heterogeneous
across spreadsheets:
different formats, cell size

3. data often ‘breaks rules’:
circling, cross through,
underlining, spilling outside
borders, etc




Challenges:

1. data is heterogeneous
within spreadsheets: different
Ink, cell colors, handwriting

2. data Is heterogeneous
across spreadsheets:
different formats, cell size

3. data often ‘breaks rules’:
circling, cross through,
underlining, spilling outside
borders, etc




Challenges:

1. data is heterogeneous
within spreadsheets: different
Ink, cell colors, handwriting

2. data Is heterogeneous
across spreadsheets:
different formats, cell size

3. data often ‘breaks rules’:
circling, cross through,
underlining, spilling outside
borders, etc

I




Objectives:

1. Build an open source tool
to extract data using crowd-
sourcing and machine-
learning

2. Test our tool on a
heterogeneous set of 139
medical flowsheets,
containing ~36K cells of data

3. Work with collaborators to
Improve the tool

14.2

17.9

0.05

145

697/
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How the Tool Works: 4 Steps

Step 1: the extraction of cell images
from the spreadsheet grid

Step 2: machine recognition of
digits within the cells

Step 3: human transcription of cells
with challenging content

Step 4: feedback of human
transcription results to the machine

|




How the Tool Works: 4 Steps

Step 1: the extraction of cell images
from the spreadsheet grid

Step 2: machine recognition of
digits within the cells

Step 3: human transcription of cells
with challenging content

Step 4: feedback of human
transcription results to the machine

|




The user takes a photo
of a spreadsheet they
wish to transcribe




The software assumes
that images are aligned



The images are
adaptively filtered to
remove color and
shading

Retain the largest
connected component
(the gridlines)




, , | . ‘ \ The image Is then cut

Into strips




----------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------

Within a given strip, the
Hough image transform
IS applied to identify the
location of near vertical
ine segments



----------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------

The number of
spreadsheet columns
are estimated based on
the number of Hough
peak clusters



K-mediods Is applied to

the Hough peaks to

iIdentify the location of
................................................................................................................. the COIumn-IIneS’ Wlthln

----------------------------------------------------------------------------------------------------------------- I []
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This leaves us with a
set of points that
represent the location of
the line within each strip



This leaves us with a
set of points that
represent the location of
the line within each strip



Starting from the
center-most strip
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We identify the closest
neighboring points
above, and below,
within a search window



This allows us to
approximate the
location of the column
lines



The same process may
be performed to
estimate the location of
the row lines

The intersection of the
row and column lines
Identify the borders of
each cell image
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Allowing us to extract
the images, for further
processing
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Digit Extraction

Once the cells are
extracted, we classify
their contents




Digit Extraction

To do this, we extract
digits from the cells




Digit Extraction

Digits are extracted to
be uniformly sized, so
they are compatible
with popular machine
learning approaches




Digit Extraction

Digits are extracted to ’ ,j’?__] Z I 173 ’2 |
be uniformly sized, so 3

they are compatible |
with popular machine }/L/,Z | 7. 7 (00
learning approaches R o '
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Digit Classification

: : CellSize = [2 2] CellSize = [4 4] CellSize = [8 8]
hlstogram of oriented Feat:re Ilz::gth = 6084 Feat:re Ilz::gth = 1296 Featfarellzeigth = 144

gradient features (HoG)
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Digit Classification -, s,cion matriy

hot |0 ! . 3 4 ) i ] : g

The algorlthm WJELS  sereremereeeemm e
trained using the
MNIST dataset




Digit Classification

The algorithm classifies
digits, according to their
multinomial probabillity
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Digit Classification
For some digits, it will

have



Digit Classification

For other digits, it will
have low confidence

30%




Digit Classification

Cells containing digits
above the confidence
threshold are
transcribed by the
machine

NERINA, il
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How the Tool Works: 4 Steps

Step 1: the extraction of cell images 3 )
from the spreadsheet grid

Step 2: machine recognition of
digits within the cells

Step 3: human transcription of cells

with challenging content

Step 4: feedback of human
transcription results to the machine




Human Transcription

Cells that contained
digits beneath a
confidence threshold
are marked for the
crowd annotation




Human Transcription

By doing crowd
annotation one cell at a
time, patient privacy Is
protected!

2%
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Digit Classification

B

The algorithm is then
retrained using the new
annotations from the
crowd workers
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Key Results + Cost Comparison
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Grid Line Extraction
The grid-line extraction

uniformities in: lighting,
93% of grid lines were
accurately identified

bends in paper, cell

size, etc.
In our collected data,

accounts for non-



Performance (%)
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cell classification performance
- = = = proportion of total data
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Mean Digit Confidence

At a digit confidence threshold of
99%, cell contents are correctly
classified in 90% of cases

Our tool was half the price and 11.4
times faster than a clinical research
assistant

A lower bound for savings using
this approach is 5.6%



Improvement (%)

=
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cell classification impmﬁment
- - = - increase in total data

0

20 40 60 80
Mean Digit Confidence

After crowd feedback, the tool’s
classification performance
improved further

At the 80% confidence threshold,
we observed a 10% improvement in
accuracy

The lower bound for savings using
this approach was 10%



Todays Talk:

2. Decision support:
Method to prognosticate coma outcomes after cardiac arrest

3. Optimal Control:
Al for passive monitoring of narrative mood during conversations

4. Moving Forward
Future directions, and opportunities for collaboration



Life After Death:
Techniques for the rapid

prognostication of post-anoxic coma
patients

MIT Press (2018)



Cardiac arrest affects 320K people in the US annually

Cardiac
Arrest

320,000



128K patients are successfully resuscitated

Cardiac

Arrest Successful
resuscitation

Time without
Spontaneous
circulation

©

128,000

320,000



100K enter an indefinite, anoxia-induced coma

Cardiac
Arrest Successful Anoxic
resuscitation Coma
Time without s
Spontaneous
circulation
6 100,000

128,000

320,000



10K will survive, but only 5K will regain normal function

Cardiac
Arrest Successful Anoxic Regain
resuscitation coma Normgl
Time without Function
Spontaneous V. ) %
circulation g
el 5,000

6 100,000

128,000

320,000



Outcome metric

Cerebral .
Performance Conscious Cerebral Consequences
(Y/N) Disability
Category ’
. Mayv resume independent activities
1 Y Mild y TOSUmEe MAependent acty
with minimal complications
Mayv resume independent activities
2 Y Moderate y. . P . v
while requiring some assistance
Will require assistance to perform activities
3 Y Severe . : .
and may involve paralysis, or dementia.
A N Vegetative R.equlreS'agﬁlatance to survive |
and will be minimally aware/responsive
5 N Brain-Death Reqmres assistance to survive

and will be totally unaware/response
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Goals of prognostication

* Primary: Prevent premature withdrawal care

« Secondary: Prevent unnecessary care
(up to $20,000 per day in ICU)



Current Prognostic Guidelines

A sequence of clinical observations and
auxiliary tests performed at specific time
points following cardiac arrest

Accurate In predicting poor neurological
outcomes when severe deficits are
present (FPR < 1%)

No guidance in cases where such clear-
cut signs are lacking, or under varying
protocols (e.g. therapeutic hypothermia)

Exclude
major
confounders

No brain stem reflexes S :
at any time Brain peath
(pupil, cornea, oculocephalic, testing
coughy)

Or

Day 1
Myoclonus Poor
Status Epilepticus outcome

Or

Day 1-3
SSEP Poor

absent N20 responses™ outcome

Or

Day 1-3
Serum NSE >33 pg/L*

Or

Day 3
Absent pupil or corneal Poor

reflexes; extensor or absent outcome
motor response

Poor

outcome

No

Indeterminate outcome

The American Academy of Neurology



Current Prognostic Guidelines

A sequence of clinical observations and
auxiliary tests performed at specific time
points following cardiac arrest

Accurate in predicting poor neurological
outcomes when severe deficits are
present (FPR < 1%)

No guidance in cases where such clear-
cut signs are lacking, or under varying
protocols (e.g. therapeutic hypothermia)

The American Academy of Neurology



Review of the Literature

EEG Features e ’ [ Clinical Quantitative Pupillometry
Tjepkema-Cloostermans, 2017 3 —'1 . O ew Suys, 2015
AUC =0.94 at 24 hours | e— o AUC = 0.81 at 24 hours
N = 283 . | = O N =50
Pain-related SSEP
Zanatta, 2015
AUC = 0.84 at 72 hours
N =167
NSE MRI
Dagmar, 2017 Jeon, 2017
AUC = 0.77 at 24 hours AUC = 0.89 at 24 hours
N =153 N = 47

Biomarkers!

How to assess prognosis after cardiac arrest and therapeutic hypothermia, Taccone et al, 2014
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 Limited Sample Sizes: larger samples are needed



Review of the Literature

EEG Features e ’ [ Clinical Quantitative Pupillometry
Tjepkema-Cloostermans, 2017 3 —'1 . O ew Suys, 2015
AUC =0.94 at 24 hours | e— o AUC = 0.81 at 24 hours
N = 283 . | = O N =50
Pain-related SSEP
Zanatta, 2015
AUC = 0.84 at 72 hours
N =167
NSE MRI
Dagmar, 2017 Jeon, 2017
AUC = 0.77 at 24 hours AUC = 0.89 at 24 hours
N =153 N = 47

Biomarkers!

How to assess prognosis after cardiac arrest and therapeutic hypothermia, Taccone et al, 2014



Review of the Literature

EEG Features (F————1 EEG] - Clinical | Quantitative Pupillometry
Tjepkema-Cloostermans, 2017 j & "M Suys, 2015
AUC =0.94 at 24 hours AUC = 0.81 at 24 hours
N =283 N =50
Pain-related SSEP
Zanatta, 2015
AUC =0.84 at 72 hours
N =167
NSE MRI
Dagmar, 2017 Jeon, 2017
AUC = 0.77 at 24 hours AUC = 0.89 at 24 hours
N =153 N = 47

' Biomarkers|

How to assess prognosis after cardiac arrest and therapeutic hypothermia, Taccone et al, 2014



Conclusions

 Limited Sample Sizes: larger samples are needed

 Time Specific: prediction should be possible at all points in time
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 Time Specific: prediction should be possible at all points In time

« Classification focused: risk scoring may be better
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Review of the Literature

EEG Features =2 e Clinical
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Conclusions

Limited Sample Sizes: larger samples are needed

Time Specific: prediction should be possible at all points in time

« Classification focused: risk scoring may be better

EEG alone can provide state-of-the-art performance



Our Goal: Build a better prognostication algorithm

Machine Neurological

EEG .
S AN Learning Qutcome
\RALALAR
FAWaAA—
— —

1. ‘Bigger’ data sets 2. Time-sensitive 3. Models that assess risk




Our Goal: Build a better prognostication algorithm

Machine Neurological

EEG .
S AN Learning Qutcome
\RALALAR
FAWaAA—
— —

1. ‘Bigger’ data sets 2. Time-sensitive 3. Models that assess risk




Our Goal: Build a better prognostication algorithm

Machine Neurological

EEG .
S AN Learning Qutcome
\RALALAR
FAWaAA—
— —

1. ‘Bigger’ data sets 2. Time-sensitive 3. Models that assess risk




Our Goal: Build a better prognostication algorithm

Machine Neurological

EEG .
S AN Learning Qutcome
\RALALAR
FAWaAA—
— —

1. ‘Bigger’ data sets 2. Time-sensitive 3. Models that assess risk
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Electroencephalogram (EEG)

EEG Collection and Interpretation Fectotes ST

HANUNGY

« Each EEG electrode
records an ensemble of
cellular activity near the
location of the electrode

’ / EEG reading

 Electrode Placement was
IN accordance with the
International 10-20 system
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EEG temporal properties
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decrease over time
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What about the clinical data?
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Clinical Feature (Mean) Good Outcomes Bad Outcomes

Age (Years) 57 63
_ -y Gender (% Male) 68 68
Clinical Characteristics 05 (i 1647 )5 7
Rhythm at Arrest (%)
VFib 69 34
Other (PEA / Asystole) 25 61
Unknown 6 5

Cause of Arrest (%)

Pulmonary 50 34

Anesthesia 3.6 8.5

Neurologic 9.6 13.8
Other/Unknown (%) 36.8 43.7
Arrest Location

In Hospital (%) 9 11

Out of Hospital (%) 63 56

Unknown (%) 28 33
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Deploy time-sensitive modeling approaches

Machine

EEG _
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1. Collected an EEG 2. Time-sensitive

archive 2x larger
than largest set
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1. Extract Frontal
EEG Data




2. Identify artifacts in
five second epochs

2.1 Disconnects and saturation
2.2 Eye and muscle artifact

2.3 Moment-based artifacts



3. Choose five minute epochs
with minimal artifact

3.1 Generate artifact score

3.2 Identify cleanest epochs
in each hour of data

cleanest
5 min epoch




52 features to describe three signal qualities

Complexity (21 features)

Category (24 features)

Connectivity (7 features)
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52 features to describe three signal qualities

Complexity (21 features)
e.g. Shannon Entropy

More is considered good

F4_WWWNWWWW
More complex

T5-01

Less complex



52 features to describe three signal qualities

Complexity (21 features)

Category (24 features)

Connectivity (7 features)
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52 features to describe three signal qualities

Category (24 features)

e.g. Burst Suppression
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52 features to describe three signal qualities

Category (24 features)

e.g. Burst Suppression
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52 features to describe three signal qualities
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52 features to describe three signal qualities

More is considered bad
FB_MW\VWMW
CB_P}M\/\MWV\MJ\,\/

More connected

F7-WMWW
TB-MW\WWMW\WM\MWWWWM

» Connectivity (7 features) Less connected

e.g. cross correlation



Feature-outcome relationship is time-dependent

Shannon Entropy

The mean and standard error of three features for the study population, partitioned by outcome
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Time (Hours)

Regularity
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Time (Hours)

Crosscorrelation Magnitude
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Time (Hours)



Feature-outcome relationship is time-dependent

Shannon Entropy (a measure of complexity) distinguishes ‘Good’ and ‘Bad’ consistently

Shannon Entropy
& O
R
o
5
S
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D
(75}
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Feature-outcome relationship is time-dependent

Regqularity (a measure of burst-suppression) distinguishes ‘Good’ and ‘Bad’ earlier

Regularity

10 20 30 40 50 60 70

Time (Hours)



Feature-outcome relationship is time-dependent

Cross correlation (a measure of complexity) distinguishes ‘Good’ and ‘Bad’ later

Crosscorrelation Magnitude

10 20 30 40 50 60 70

Time (Hours)



Conclusion

* The relationship between features and outcomes changes over time

e Suggests a modelling approach where coefficients evolve over time



Logistic Regression with Elastic Memory

« Data iIs split into 10 training

and testing folds. %

90%

10%



Logistic Regression with Elastic Memory

 We train a series of models
that classify patient outcomes,
In particular time intervals:

1-12 hours
13-24 hours
25-36 hours etc.

Time (Hours)

1-12 Hrs 13-24 Hrs  25-36 Hrs

10%



Logistic Regression with Elastic Memory

Extract features
From training set 1-12 Hrs
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* Features are extracted at
particular time intervals
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Time (Hours)

From training set 1-12Hrs  13-24 Hrs

* Features are extracted at
particular time intervals

e 13- 24 hours

10%



Logistic Regression with Elastic Memory

« Features are extracted at
particular time intervals

« 25-36 hours, and so on...

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

%@

10%
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Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs
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* Features used by models Iin
earlier time intervals are
passed forward as ‘'memories’
for models in future time

Intervals
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* Features used by models Iin
earlier time intervals are
passed forward as ‘'memories’
for models in future time

Intervals

Time (Hours)

Extract features
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Logistic Regression with Elastic Memory

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

Time (Hours)

* Features used by models Iin
earlier time intervals are
passed forward as ‘'memories’
for models in future time
Intervals

features

features

features

10%



Logistic Regression with Elastic Memory

Extract features
From training set

 We retain only the most
Important features using
Elastic Net

 Penalizes the size of the
regression coefficients based
on both their I* norm and their
> norm :

1
argmaxy ) logL(yy; B.x) - Al lBl], + 5 (1 - @)|IBI];)

Identify features
predictive within
time interval

features

1-12 Hrs

Time (Hours)

13-24 Hrs

features

features

25-36 Hrs

Elastic
Net

10%

Elastic
Net



Logistic Regression with Elastic Memory

* Alogistic regression model
with the selected features is
used to evaluate performance
on the held out test-sets

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

features

features

features

Identify features
predictive within
time interval

Train GLM using
selected features

Test models on
held out data




Logistic Regression with Elastic Memory

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

Time (Hours)

* Alogistic regression model
with the selected features is
used to evaluate performance

features

features

features

on the held out test-sets ) ‘
* This process was designed to Identity features @
. . . redictive within

mimic how actual providers fime interval

perform prognosis - -
Train GLM using ? Q
selected features
Test models on
held out data @
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Deploy time-sensitive modeling approaches

EEG Machine
Learning

1. Collectedan EEG 2. Logistic Regression
archive 2x larger with Elastic
than largest set Memories and ~10x
previously described the features used in

In the literature prior work



Assessing performance: classification and calibration

EEG Machine Neurological
Learning QOutcome
. @
1. Collectedan EEG 2. Logistic Regression 3. Models that assess risk
archive 2x larger with Elastic
than largest set Memories and ~10x
previously described the features used in

In the literature prior work



Classification



Classification

A
: Our approaCh 08 = Lc_)gistic R_egressior_1
eXthIted enhanced with Elastic Memories
classification 075 =
performance 5
§ 0.7
compared to the = Lot Pegesior
iterature baseline Q  os X
o
= 0.6 - Random Forest
* Improvement was < @
most pronounced at
later time intervals
0.5 . —

| | | | | | | |
1-12  12-24 2436 36-48 4860 60-72
Time (Hours)



Calibration

* Qur approach
exhibited enhanced
calibration compared
to the literature
baseline

* This allows for a more
nuanced use of the
model, compared to
existing approaches

Actual Probability of Positive Outcome

| | | | | | | | | | | |
O 10 20 30 40 50 60 70 80 90 100
Predicted Probability of Positive Outcome
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Time Block

25-36 Hours
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1. Collectedan EEG 2. Logistic Regression 3. Models that assess risk
archive 2x larger with Elastic
than largest set Memories and ~10x
previously described the features used in
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Assessing performance: classification and calibration

EEG
sV VA —
AWV
FAMmAA-
>

1. Collectedan EEG
archive 2x larger
than largest set
previously described
In the literature

Machine
Learning

' .

2.

Logistic Regression
with Elastic
Memories and ~10x
the features used in
prior work

Neurological
Outcome

3. Our model had superior
calibration and
classification performance
compared to state-of-the-
art approaches



Conclusion

A modelthat accounts for temporal fluctuations in feature values is
better at prognosis, and better calibrated than models which do not
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Todays Talk:

3. Optimal Control:
Al for passive monitoring of narrative mood during conversations

4. Moving Forward
Future directions, and opportunities for collaboration



Personalized Medication Dosing
Using Volatile Data Streams

AAAI (2018)



Personalized medicine:

A brief history

* 460BC: Personalized medicine
was envisioned by Hippocrates

« 1990-2003: A surge of interest In
personalized medicine following
the human genome project

« 2017: FDA approves record
number of personalized
medicines

Allen Frances, M.D., Contributor
Allen Frances MD is Professor Emeritus of Psychiatry and former Chair at Duke University

Patient-Centered Vs. Lab-Centered
‘Personalized Medicine’

07/24/2017 0112 pm ET | Updated Jul 24, 2017

“It is more important to know the patient
who has the disease than the disease the
patient has.” — Hippocrates

Allen Frances, MD, Professor of Psychiatry, Duke University
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Personalized medicine:

A brief history

* 460BC: Personalized medicine
was envisioned by Hippocrates

« 1990-2003: A surge of interest In
personalized medicine following
the human genome project

« 2017: FDA approves record
number of personalized
medicines

- PM(: PERSONALIZED
Bzs MEDICINE COALITION

lllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

NEWS
FDA Approves Record Number of
Personalized Medicines in 2017



But what is “personalization”



Personalized medicine:
Two approaches

« Static personalization Is often
performed at the level of
demography
(e.g. gender, weight)

* Dynamic personalization
begins with demography, and
becoming more patient-specific
as better data and responses to
treatment are collected
(e.g. anesthesia control)

Drug Dosage Recommendations’ (3)

Table. 44

Dose in mg/kg (maximum dosage in parentheses)

Drug | Adults/Children? Daily | 1timeweeks | 2Umes/ | 3times/
week week
40- 14.5-20 36.4-50 21.8-30
w 55 mg/kg mg/kg mg/kg
o kg (800 mg) (2000 mg) (1200 mg)
i 56- 16-21.4 37.3-50 26.7-35.7
Adults g 75 mg/kg mg/kg mg/kg
EMB* h kg (1200 mg) (2800 mg) (2000 mg)
t | 7e- 17.8-21.1 44 4-526 26.7-31.6
90 mg/kg mg/kg mg/kg
kg (1600 mg) (4000 mg) (2400 mg)
? 15-20 mg/kg 50 ma’kg
Children (1000 mg) (2500 mg)

Ethambutol Dosing Suggestions




Personalized medicine:
Two approaches

 Static personalization Is often
performed at the level of
demography
(e.g. gender, weight)

* Dynamic personalization
begins with demography, and
becoming more patient-specific
as better data and responses to
treatment are collected

(e'g' anesthesia COntl'Ol) Source: Medsteer, http://medsteer.com/




Personalized medicine:

Needs deployable approaches

 Patients and providers have been
slow to adopt personalized
medicines, or alter established
behaviors

 Solutions must work under real-
world, imperfect conditions

 Translational impact will require
Interpretable approaches that
Integrate with provider and patient
workflows to address high-value
problems

The Limits of Personalized
Medicine

A new study suggests that knowing their genetic risk of disease
doesn't motivate people to change their behavior.

TIMOTHY CAULFIELD MAR 16, 2016 m

SCIENTIFIC
AMERICAN. SUBSCRIBE

MEDICINE
A Very Personal Problem

Now personalized genetic medicine offers tests to avoid dangerous drug reactions—yet doctors are
reluctant to use them



Personalized medicine:
Needs deployable approaches

Missing Data

 Patients and providers have been
slow to adopt personalized
medicines, or alter established
behaviors

 Solutions must work under real-
world, imperfect conditions

 Translational impact will require
Interpretable approaches that
Integrate with provider and patient
workflows to address high-value
problems

Artifacts



Personalized medicine:
Needs deployable approaches

Solution

 Patients and providers have been
slow to adopt personalized
medicines, or alter established
behaviors

 Solutions must work under real-
world, imperfect conditions

 Translational impact will require
Interpretable approaches that
Integrate with provider and patient
workflows to address high-value
problems

Problem



Personalized medicine:
High value problem

* Medication dosing

 Errors are responsible for
~400,000 preventable hospital
deaths each year

« Over- or under- dosing can
« Extended hospital stay,
* Require follow-up interventions,
* Incur additional morbidity.
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 Errors are responsible for
~400,000 preventable hospital
deaths each year

« Over- or under- dosing can
« Extended hospital stay,
* Require follow-up interventions,
* Incur additional morbidity.




Personalized medicine:

Our study goal

* A persona
dosing po

ized medication
icy for a common

anticoagu

ant, heparin
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Personalized medicine:
Our study goal

* A personalized medication

dosing policy for a common H
anticoagulant, heparin . :
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Methods



The data MIVIC

* We extracted 4,470 patients
from MIMIC who received
Intravenous UFH infusions
during their ICU stay

* MIMIC Is a de-identified,
publicly available EMR
arChlve Of 407000_'_ Unlque ICU If you use MIMIC data or code in your work, please cite the following

. . publication:
admissions between 2001 -
20 1 6 . MIMIC-1II, a freely accessible critical care database. Johnson AEW,
Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P,
Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35.
Available from: http://www.nature.com/articles/sdata201635
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The outcome

* Clinicians dose heparin, wait 6-12 hours, measure
anticoagulation, then adjust dose as needed

« Goal is to obtain a therapeutic level of anticoagulation as quickly
as possible, as indicated by aPTT

« aPTT may be categorized into one of three states:
therapeutic, sub-therapeutic, and supra-therapeutic
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The outcome

* Clinicians dose heparin, wait 6-12 hours, measure
anticoagulation, then adjust dose as needed

« Goal is to obtain a therapeutic level of anticoagulation as quickly
as possible, as indicated by aPTT

« aPTT may be categorized into one of three states:
therapeutic, sub-therapeutic, and supra-therapeutic



Features Mean Standard  Missing
= . (N=9684) Deviation Data (%)
Clinical Features  swic Features
Age 68.01 14.91 0.00
Gender (%Male) 58 - 0.00
ICU Type (%Surgical) 35 - 0.00
e \We extracted all Ethnicity (% White) 69 - 0.00
End Stage Renal Disease (%) 3 - 0.00
features that are Pulmonary Embolism (%) 9 - 0.00
I Continuously Measured Features

belleved_ to CO_ nfou nd Heparin Dose (units/kg) 11.79 4.11 6.88
the relationship White Blood Cell Count 12.26 6.35 6.23
Creatinine 1.58 1.48 5.18
between UFH and Carbon Dioxide 2461 467 5.69
aPTT Heart Rate (Mean) 84.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
Hematocrit 31.50 4.65 4.27
Hemoglobin 10.63 1.66 6.45
Platelet Count 226.76 118.29 5.10
Urea 31.72 23.45 6.03
Temperature (F) 08.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01
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Features Mean Standard  Missing

= . (N=9684) Deviation Data (%)

Clinical Features  [swuac Featres
Age 68.01 14.91 0.00
Gender (%Male) 58 - 0.00
ICU Type (%Surgical) 35 - 0.00
Ethnicity (% White) 69 - 0.00
End Stage Renal Disease (%) 3 - 0.00

° Stat|C featu res are Pulmonary Embolism (%) 9 - 0.00

single measures that
don’t change over time

* Age, gender, etc.



Clinical Features

e Static features are
single measures that
don’t change over time

 These features are
routinely collected
(no missing data)

Features Mean Standard | Missing
(N=9684) Deviation | Data (%)
Static Features

Age 68.01 14.91 0.00
Gender (%Male) 58 - 0.00
ICU Type (%Surgical) 35 0.00
Ethnicity (% White) 69 0.00
End Stage Renal Disease (%) 3 0.00
Pulmonary Embolism (%) 9 0.00




Features Standard  Missing

C I | N | Cal F eatures (N= 9684) Mean 1, viation Data (%)
[ J
Continuous Iy Continuously Measured Features
measured features Heparin Dose (units/kg) 1.79 411 6.88
- White Blood Cell Count 12.26 6.35 6.23
change over time Creatinine 1.58 1.48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 34.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
Hematocrit 31.50 4.65 4.27
Hemoglobin 10.63 1.66 6.45
Platelet Count 226.76 118.29 5.10
Urea 31.72 23.45 6.03
Temperature (F) 08.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12

Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01




Clinical Features

» Continuously
measured features
change over time

* Heparin dose is one of
these features

Features Mean Standard  Missing
(N=9684) Deviation Data (%)
Continuously Measured Features

Heparin Dose (units/kg) 11.79 4.11 6.88
White Blood Cell Count 12.26 6.35 6.23
Creatinine 1.58 1.48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 34.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
Hematocrit 31.50 4.65 4.27
Hemoglobin 10.63 1.66 6.45
Platelet Count 226.76 118.29 5.10
Urea 31.72 23.45 6.03
Temperature (F) 08.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01




Features Standard  Missing

C I | N | Cal F eatures (N= 9684) Mean 1, viation Data (%)
o
Continuous Iy Continuously Measured Features
measured features Heparin Dose (units/kg) 1179 411 6.88
- White Blood Cell Count 12.26 6.35 6.23
change over time Creatinine 1.58 1.48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 34.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
* Among several Hematocrit 3150 465 4.27
Hemoglobin 10.63 1.66 6.45
Platelet Count 226.76 118.29 5.10
Urea 31.72 23.45 6.03
Temperature (F) 08.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01




Features Standard  Missing

Clinical Features (N= 9684) Mean  noviation Data (%)
° I )
Continuous Iy Continuously Measured Features
measured features Heparin Dose (units/kg) .79 411 6.83
- White Blood Cell Count 12.26 6.35 6.23
change over time Creatinine 1.58 1.48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 34.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
* The value of these Hematocrit 3150 4.65 4.27
i Hemoglobin 10.63 1.66 6.45
fe.atL.Jres are occaS|onaIIy Platelet Count 226.76 118.29 5.10
MmISSINg, or fOr some Urea 31.72 23.45 6.03
. Temperature (F) 08.28 2.71 7.05
patients unmeasured International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01
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* Multinomial logistic No8PTT Oraws >< Plupra nerapouic) —
regression (MNR) where
model features and
parameters are re-
estimated for each patient,
at each aPTT draw using a
weighted combination of
the data from

* a population of existing
patients, and

* the individual patient’s real-
time data stream
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Proposed Approach

* Multinomial logistic
regression (MNR) where
model features and
parameters are re-
estimated for each patient,
at each aPTT draw using a
weighted combination of
the data from

* a population of existing
patients, and

* the individual patient’s real-
time data stream

No aPTT Draws

First aPTT Draw

Second aPTT Draw

Population Model

X

Individual Model 1

Existing Patient
Population

X

Individual Model 1

Patient 1
Data

X

Patient 1
Data

p(sub-therapeutic) =
p(supra-therapeutic) s



Method, formally:

State Interval Individual Population Multinomial Logistic Regression, at each interval
S n 1 P exiTQ?,s
n __ n n -
Data Samples  Features Outcome p(y?/ o S|X?: ’9?3 ) o 23 exiTQ?k
xXnr rr e n =
/) v 1 y?,
Xn 7”” n n Where likelihood is a weighted combination of p and j data
p Tp G Yp . )
i i () 1 (7) $(n) 7 (k) |+ (k)
Dat Dat n n n
Parameters ata row (p) ata rOV(V (;) E(H:I’) = H p(yij IX?: . 91 ) X H p('yp IXp 9,3 )
n (k) (k) (),,0 j=1 k=1
93"5 Xp Yp = XY
Population versus individual data weight is time-dependent
Q. 7Y  weighting hyper-parameters qﬁ(n) — T (f:er’Tl )
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Method, formally:

P(supra) increases wrt dose; P(sub) decreases wrt dose; P(ther) is maximum when:
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N O n - pe rS O n al | Z e d Features M Standard  Missing

_ (N= 9684) “N " pDeviation Data (%)
baseline methods swic Feaures
Age 68.01 14.91 0.00
» Baseline 1: Multinomial logistic %[I}d,;r (%gfge) cal gg i 388
regression using static features, Type (%eSurgical) - :
without personalization Ethnicity (% White) 69 - 0.00
End Stage Renal Disease (%) 3 - 0.00
« Baseline 2: Multinomial logistic Pulmonary Embolism (%) 0 - 0.00

regression using all features, without
personalization and excluding subjects
with missing data (23.6%) of all patients

« Baseline 3: Multilayer neural network.
Densely connected, feed-forward, two
hidden layers, softmax output, ReLU
activation, Xavier initialization, scaled
conjugate gradient descent optimization,
grid search topology selection.

» Baseline 4: Reinforcement learning
via deterministic policy network. We
defined the state, action, and rewards as
follows: (1) State: aPTT and laboratory
measures (2) Actions: maintain dose,
increase dose, decrease dose. (4)
Rewards: proportional to the aPTT error.



Standard  Missing

Non-personalized  reatres Mean

Rewards: proportional to the aPTT error.

i (N=9684) Deviation Data (%)
baseline methods  swic Features

Age 68.01 14.91 0.00
Baseline 1: Multinomial logistic %Sd;r(%gfge) cal gg i 888
regression using static features, , ype( ¢ l.lI.‘glCEi.) ) ‘
without personalization Ethnicity (% White) 69 - 0.00

End Stage Renal Disease (%) 3 - 0.00
Baseline 2: Multinomial logistic Pulmonary Embolism (%) 0 - 0.00
regression using all features, without Continuously Measured Features
personalization and excluding subjects : -
with missing data (23.6%) of all patients {{Velﬁlﬂgg g;eézﬁlg'g;%)t i;gg g;; ggg
Baseline 3: Multilayer neural network. Creatinine 1.58 1.48 5.18
Densely connected, feed-forward, two Carbon Dioxide 24.61 4.67 5.69
hidden layers, softmax output, ReLU Heart Rate (Mean) 84.81 17.12 0.01
activation, Xavier initialization, scaled Glasgow Coma Score 12.40 3.63 0.02
co_njugate gradient descent_optimization, Hematocrit 31.50 4.65 4.7
grid search topology selection. Hemoglobin 10.63 1,66 6.45
Baseline 4: Reinforcement learning Platelet Count 226.76 118.29 5.10
via deterministic policy network. We Urea 31.72 23.45 6.03
defined the state, action, and rewards as Temperature (F) 08.28 2.71 7.05
follows: (1) State: aPTT and laboratory International Normalized Ratio 1.50 1.10 7.03
measures (2) Actions: maintain dose, Prothrombin Time 15.22 3.99 0.12
Increase dose, decrease dose. (4) Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01




Non-personalized
baseline methods

» Baseline 1: Multinomial logistic
regression using static features,
without personalization

Softmax

» Baseline 2: Multinomial logistic
regression using all features, without
personalization and excluding subjects
with missing data (23.6%) of all patients

« Baseline 3: Multilayer neural network.
Densely connected, feed-forward, two
hidden layers, softmax output, ReLU
activation, Xavier initialization, scaled
conjugate gradient descent optimization,
grid search topology selection.

» Baseline 4: Reinforcement learning
via deterministic policy network. We
defined the state, action, and rewards as
follows: (1) State: aPTT and laboratory
measures (2) Actions: maintain dose,
increase dose, decrease dose. (4)
Rewards: proportional to the aPTT error.




Non-personalized
basellne methOdS reinforce

» Baseline 1: Multinomial logistic
regression using static features,
without personalization

» Baseline 2: Multinomial logistic
regression using all features, without
personalization and excluding subjects
with missing data (23.6%) of all patients

« Baseline 3: Multilayer neural network. C

Densely connected, feed-forward, two
hidden layers, softmax output, ReLU

activation, Xavier initialization, scaled
conjugate gradient descent optimization, 0
grid search topology selection.

» Baseline 4: Reinforcement learning
via deterministic policy network. We
defined the state, action, and rewards as
follows: (1) State: aPTT and laboratory Input
measures (2) Actions: maintain dose,
increase dose, decrease dose. (4)
Rewards: proportional to the aPTT error.




Results



Data characteristics

 UFH misdoing is consistently
error-prone even after
multiple aPTT draws (and
consequent opportunities for
dose adjustment).

e 80% of our sample stopped
receiving aPTT draws after
their fifth adjustment

* 5% of the 3,883 patient with
recorded aPTT values had a
sixth dose adjustment.
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Overall performance of
personalized approach

« Highest overall accuracy (60%)
« Highest overall VUS (0.46), a 0.02 improvement over the RL approach

« 7.3% more likely to detect supra-therapeutic doses than the population
model that didn’t exclude patients
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Overall performance of
personalized approach

« Highest overall accuracy (60%)
* Highest overall VUS (0.46), a 0.02 improvement over the RL approach

« 7.3% more likely to detect supra-therapeutic doses than the population
model that didn’t exclude patients



Temporal performance of
personalized approach

Our approach consistently outperformed the best comparable baseline across time

0.8 Predicting Therapeutic Predicting Underdose

Predicting Overdose

Individual

+ Population

AUC on Remaining Patients

0.5

o 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5
Dose Adjustment Number Dose Adjustment Number Dose Adjustment Number



Temporal performance of

personalized approach

Our approach might reduce errors, and bring patients to therapeutic aPTT, faster.
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Conclusion and
Future Direction

* Heparin dosing guidelines are
based on population models

 Patient-specific modeling has
the potential to improve
performance

* We are working to deploy this
algorithm within the BIDMC for
real-world impact

Questions and Collaborations:

http://ghassemi.xyz



Todays Talk:

4. Moving Forward
Future directions, and opportunities for collaboration



Future Directions

* Building a more complete health
profile using on-hospital and out-

of-hospital data

* This should include the input of
clincial experts, directly.

MIT News

A new study from MIT computer
scientists suggests that human doctors
provide a dimension that, as yet, artificial
intelligence does not.

Image: Chelsea Turner, MIT

Doctors rely on more than just data for medical
decision making

Computer scientists find that physicians’ “gut feelings” influence how many tests they
order for patients.



Predicting Latent Narrative Mood
using Audio and Physiologic Data

As presented at AAAI-17






Experiment: Tell us a story

O -0




Participants

X6 x4



Modalities




Conversation score

Happy or Sad?




Data

* Physiologic

Accelerometer, Bio-impedance, ECG, GSR, PPG, Skin Temperature, Gyroscope

* Audio
RMS Energy, MFCC, Pitch, Zero Crossing Rate, Voicing Probability

* Text

Positive/Negative Sentiment



Data + Features

* Physiologic - 222
Accelerometer, Bio-impedance, ECG, GSR, PPG, Skin Temperature, Gyroscope
{mean, median, variance}

e Audio - 386
RMS Energy, MFCC, Pitch, Zero Crossing Rate, Voicing Probability
{mean, max, min, std, skew, kurtosis, range, absolute pos., linear regression offset/slope/mse}

e Text - 2

Positive/Negative Sentiment
{mean}

254



Data + Features

* Physiologic - 222
Accelerometer, Bio-impedance, ECG, GSR, PPG, Skin Temperature, Gyroscope
{mean, median, variance}

e Audio - 386
RMS Energy, MFCC, Pitch, Zero Crossing Rate, Voicing Probability
{mean, max, min, std, skew, kurtosis, range, absolute pos., linear regression offset/slope/mse}

e Text - 2

Positive/Negative Sentiment

(mean) 500+ Features

255



There are many things we can look at




Want to use the most important

e\ /




Forward Feature Selection



D@ .-

Logistic Regression Model

Conversation Mood
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Narrative-Level Classification

Model AUC (1)  AUC (o) E%rtfﬁ”;t'r']‘]e
Weighted KNN 0.74 0.14 [0.68 0.85]
Medium KNN 0.74 0.14 [0.68 0.84]
Cubic KNN 0.76 0.10 [0.69 0.84]
Quadratic SVM 0.77 0.16 [0.64 0.90]
Coarse KNN 0.82 0.07 [0.77 0.89]
Quadratic Disc. 0.83 0.06 [0.79 0.89]
Gaussian SVM 0.86 0.07 [0.80 0.93]
Linear Disc. 0.90 0.07 [0.83 0.95]
Subspace Disc. Ens. 0.90 0.06 [0.85 0.95]

Logistic Regression 0.92 0.05 [0.88 0.95]



Conversation score

Happy or Sad?




Conversation score

Happy or Sad?

Segment score

Happy, Happy, Happy, Happy, Happy, Happy,
Meutral, Meutral, Meutral, Meutral, Meutral, Meutral,
Sad? Sad? Sad? Sad? Sad? Sad?

-+ >

5 seconds



Story Segments (5 Seconds)
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Sad Stories
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Neural networks are a powerful solution
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Optimize NN size
Number of Layers : {0,1,2}
Number of Nodes in each Layer : [1-15]

Num. of Examples / Num. of Features > 10



N

w

Hidden Layer 1 Size
O, HaN

143

142

2 3 4 5 6 7 8 9 1011 12 13 14 15
Hidden Layer 2 Size

293



N

w

Hidden Layer 1 Size
O, HaN

143

142

2 3 4 5 6 7 8 9 1011 12 13 14 15
Hidden Layer 2 Size

294



But there is yet more optimization



Feature Insertion
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Feature Insertion
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Feature Insertion

* 310 possible configurations
* Explored random 10% the space
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Segment-Level Classification

Model Accuracy (%) Accuracy (%) Percentile
(M) (o) [25% 75"

Random 33.3 - -
Multinomial Logistic Reg. 40.8 7.36 [34.1 46.0]
NN (2L-6x3N) 45.3 8.10 [38.5 49.0]
+ Feature Optimization 47.3 8.72 [39.9 55.1]
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Estimated Emotion

(Positive) (Neutral) (Sad) (Sad) (Neutral) (Positive)
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the first day | write introduction and write and
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Learn More

http://ghassemi.xyz



http://ghassemi.xyz/

