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Cardiac arrest affects 320K people in the US annually
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128K patients are successfully resuscitated
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100K enter an indefinite, anoxia-induced coma
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10K will survive, but only 5K will regain normal function
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Goals of prognostication
* Primary: Prevent premature withdrawal care

« Secondary: Prevent unnecessary care
(up to $20,000 per day in ICU)
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Current Prognostic Guidelines

A sequence of clinical observations
and tests performed following
cardiac arrest

Accurate in predicting poor
neurological outcomes when severe
deficits are present (FPR < 1%)

Less guidance in cases where
clear-cut signs are lacking, or under
varying protocols (e.g. therapeutic
hypothermia)

The American Academy of Neurology
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« Limited Sample Sizes: larger samples are needed
« Time Specific: prediction should be possible at all points in time

« Classification focused: risk scoring may be better
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Conclusions

« Limited Sample Sizes: larger samples are needed
» Time Specific: prediction should be possible at all points in time
« Classification focused: risk scoring may be better

 EEG alone can provide state-of-the-art performance

- deep learning could eliminate the need for feature engineering
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Data collection
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Electroencephalogram (EEG)
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EEG temporal properties

« Data densities linearly
decrease over time

Number of subject with
upto EEG length

 EEG withdrawal is assessed
approximately once every 24
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Clinical Characteristics

Clinical Feature (Mean)

Good Outcomes

Bad Outcomes

Age (Years)

Gender (% Male)
ROSC (Mins)

Rhythm at Arrest (%)
VFib

Other (PEA / Asystole)
Unknown

Cause of Arrest (%)
Pulmonary
Anesthesia
Neurologic
Other/Unknown (%)
Arrest Location

In Hospital (%)

Out of Hospital (%)

Unknown (%)

57
68
19.47

69
25

50

3.6

9.6
36.8

63
28

63
68
25.7

34
61

34
8.5
13.8
43.7

11
56
33




Patients

Clinical Characteristics

* Average Age: 60

* Older patients do worse
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Clinical Feature (Mean) Good Outcomes Bad Outcomes

Gender (% Male) 68 68

Clinical Characteristics

* 68% Male

 No difference w.r.t. outcome

600

500 r

400

300

Patients

200

100

Female Male
Sex



Clinical Characteristics

* Average ROSC time: 23 mins

Patients

* Longer time to ROSC is bad
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Clinical Feature (Mean)

Good Outcomes

Bad Outcomes

Clinical Characteristics

Rhythm at Arrest (%)
VFib
Other (PEA / Asystole)

* 50% have Vfib arrest rhythm

Unknown

* VFib patients do better

400

Patients

69
25

34
61

? Other VFib
Rhythm at Arrest



Clinical Feature (Mean) Good Outcomes Bad Outcomes

Clinical Characteristics

« (Causes are often unknown

Cause of Arrest (%)

Patients

Pulmonary 50 34
400
Anesthesia 3.6 8.5
300 |- - Neurologic 9.6 13.8
Other/Unknown (%) 36.8 43.7
200 .
100 i
0 — v \/vy =< -~

? Pulm. Anes. Neuro.



Clinical Feature (Mean)

Good Outcomes

Bad Outcomes

Clinical Characteristics

 Location often unknown

* Most are outside hops.

500
400
g 300
2 Arrest Location
& 200
In Hospital (%)
100 Out of Hospital (%)
0 Unknown (%)

63
28

11
56
33

? Out Hosp. In Hosp.
Location of Arrest
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Develop time-sensitive modeling approaches
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1. Collected an EEG 2. Time-sensitive
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Three Approaches
Two Feature Based:

* 1. Sequential Logistic Regression with ‘Elastic’ memories.

« 2. Sequential Logistic Regression with Dynamic Bayesian network constraints

One Data Driven

* 3. Deep neural networks
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2. ldentify artifacts in
five second epochs

2.1 Disconnects and saturation
2.2 Eye and muscle artifact

2.3 Moment-based artifacts



3. Choose five minute epochs
with minimal artifact

3.1 Generate artifact score

3.2 Identify cleanest epochs
in each hour of data

1

cleanest
5 min epoch




57 features to describe three signal qualities

Complexity (21 features)

Category (31 features)

Connectivity (7 features)
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57 features to describe three signal qualities

Complexity (21 features)
e.g. Shannon Entropy

More is considered good
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57 features to describe three signal qualities

Complexity (21 features)

Category (31 features)
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57 features to describe three signal qualities

Burst Burst
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57 features to describe three signal qualities

Category (31 features)
e.g. Burst Suppression
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57 features to describe three signal qualities
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57 features to describe three signal qualities

More is considered bad
F3_%WWW
CB-MMWWNW

More connected
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» Connectivity (7 features) Less connected

e.g. cross correlation



Feature-outcome relationship is time-dependent

The mean and standard error of three features for the study population, partitioned by outcome

‘GO ;
Od OU t Co mes

Regularity

Crosscorrelation Magnitude

Shannon Entropy

10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60 70
Time (Hours) Time (Hours) Time (Hours)



Feature-outcome relationship is time-dependent

Shannon Entropy (a measure of complexity) distinguishes ‘Good’ and ‘Bad’ consistently

Shannon Entropy
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Feature-outcome relationship is time-dependent

But the value that optimally discriminates over time, changes.
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Feature-outcome relationship is time-dependent

But the value that optimally discriminates over time, changes.
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Feature-outcome relationship is time-dependent

Regularity (a measure of burst-suppression) distinguishes ‘Good’ and ‘Bad’ earlier
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Feature-outcome relationship is time-dependent

But the value that optimally discriminates over time, changes.
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Feature-outcome relationship is time-dependent

But the value that optimally discriminates over time, changes.
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Feature-outcome relationship is time-dependent

Cross correlation (a measure of complexity) distinguishes ‘Good’ and ‘Bad’ later

70

Crosscorrelation Magnitude
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Conclusion
* The features-outcome relationship changes over time

* Needs modelling approach where coefficients evolve over time



Three Approaches
Two Feature Based.:

* 1. Sequential Logistic Regression with ‘Elastic’ memories

« 2. Sequential Logistic Regression with Dynamic Bayesian network constraints

One Data Driven

* 3. Deep neural networks



Logistic Regression with Elastic Memories

* n =438 patients

« We used 52/57 features

 Validation: 10-fold

l test

10%




Logistic Regression with Elastic Memories

Time (Hours)

) ) 1-12 Hrs 13-24 Hrs 25-36 Hrs
« We train a series of models

that classify patient outcomes,
In particular time intervals:

1-12 hours
13-24 hours
25-36 hours etc.

l test

10%




Logistic Regression with Elastic Memories

Extract features
From training set 1-12 Hrs

Time (Hours)

« Features are extracted at
particular time intervals

features @

e 1-12 hours
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Logistic Regression with Elastic Memories

Extract features

Time (Hours)

From training set 1-12Hrs  13-24 Hrs

« Features are extracted at
particular time intervals

e 13- 24 hours

l test

10%




Logistic Regression with Elastic Memories

« Features are extracted at
particular time intervals

e 25-36 hours, and so on...

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

features

features @

l test

10%




Logistic Regression with Elastic Memories

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

features

feat&t@

Time (Hours)

* Features used by models in
earlier time intervals are
passed forward as ‘memories’
for models in future time

Intervals

l test

10%




Logistic Regression with Elastic Memories

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

features
features |

Time (Hours)

* Features used by models in
earlier time intervals are
passed forward as ‘memories’
for models in future time

Intervals

l test

10%




Logistic Regression with Elastic Memories

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

Time (Hours)

* Features used by models in
earlier time intervals are
passed forward as ‘memories’
for models in future time
Intervals

features

features

features

l test

10%




Logistic Regression with Elastic Memories

* We retain only the most
important features using
Elastic Net

Penalizes the size of the
regression coefficients based
on both their [* norm and their
[> norm :

1
argmaxy Y logL(yy,; B %) — Ala|IBI], + 5 (1 - @)|IBI];]

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

Elastic Elastic
Net Net

l test

10%

features

features

features

Identify features
predictive within
time interval




Logistic Regression with Elastic Memories

Extract features
From training set

* Alogistic regression model
with the selected features is
used to evaluate performance
on the held out test-sets

Time (Hours)

1-12 Hrs 13-24 Hrs 25-36 Hrs

features

features

features

Identify features
predictive within
time interval

Train GLM using
selected features

Test models on
held out data




Logistic Regression with Elastic Memories

Time (Hours)
Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

* Alogistic regression model
with the selected features is
used to evaluate performance
on the held out test-sets

features

features

features

* This process was designed to (dentity features
imitate how providers might e itorval

perform prognosis N
Train GLM using %—D

selected features

Test models on
held out data

- —



Coefficients Mat Reflect Three Kinds of Relationships

 An immediate value is most predictive of outcomes.
* A prior value is most predictive of outcomes.

 The cumulative value is most predictive of outcomes.
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Calibration

* Qur approach
exhibited enhanced
calibration compared
to the literature
baseline

 This allows for a more
nuanced use of the
model, compared to
existing approaches
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Calibration
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Calibration

GLM: Time-Sensitive
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Pros/Cons of the Approach

» Advantages
* Does not require time of arrest
* Prognostic performance improves over time using ‘memories’

 Well calibrated

 Disadvantages
+ Alignment with respect to EEG initiation harm physiological interpretations
« Assumes that feature coefficients in neighboring intervals are independent

* Does not account for spatial information



Three Approaches

Two Feature Based:

q 1 L agistio B o with Elagtic e

« 2. Sequential Logistic Regression with Dynamic Bayesian network constraints

One Data Driven

* 3. Deep neural networks



Logistic Regression with DBN

n = 785 patients

10 EEQG, 5 clinical features

Validation:
Leave-one-subject-out



Logistic Regression with DBN

Signal Feature

n = 785 patients

Complexity
Shannon Entropy
« 10 EEG, 5 clinical features Hjorth Complexity
False Nearest Neighbor
 Validation: Category
. Leave-one-subject-out Standard Deviation

Regularity (burst-suppression)
Diffuse Slowing
Spikes

Connectivity

Coherence - delta
Phase Lag Index

Cross-correlation Magnitude




Logistic Regression with DBN

n = 785 patients

10 EEQG, 5 clinical features

Validation: N-1 subjects
Leave-one-subject-out



Logistic Regression with DBN

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

« We extracted features in
12 hour intervals:

N-1 subjects



Logistic Regression with DBN

Time (Hours)

Extract features

From training set 1-12 Hrs

« We extracted features in
12 hour intervals:

features @

e 1-12 hours

N-1 subjects
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Extract features
From training set 13-24 Hrs

« We extracted features in
12 hour intervals:

« 13-24 hours

N-1 subjects



Logistic Regression with DBN

Time (Hours)

Extract features
From training set 25-36 Hrs

features @

« We extracted features in
12 hour intervals:

e 25-36 hours

N-1 subjects



Logistic Regression with DBN

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

features @

features @

« We extracted features in
12 hour intervals:

¢ eflc...

N-1 subjects



Logistic Regression with DBN

Time (Hours)
Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

features ﬁ

features ﬁ
* With corresponding coefficient ~ N-1 subjects
measure errors r? ,which are

simply the standard errors B @ @ e

* We learn parameters of several
logistic regressions: coefficient
measures g




Logistic Regression with DBN

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

e To relate the coefficient o
measurements across time *l i

] ) features
intervals, we specify a model of ‘ﬁ

coefficient dynamics which fE.Eﬁ

provide coefficient estimates p! N-1 subjects

FBY) =B+ A = B B @ &«

+  With estimate error denoted by P?

P/ =P +Q
Q@ @ @



Logistic Regression with DBN

Time (Hours)

Extract features
From training set 1-12Hrs  13-24 Hrs  25-36 Hrs

features ﬁ

Bl =Bl + K][B] — B]]

P! B (L

Bl

* A simple DBN (the kalman filter)
recursively determine the
optimal coefficient estimates

N-1 subjects

» With coefficient uncertainty

P! =(1-K])P]™" :



Logistic Regression with DBN

 DBN estimates rely more
strongly on prior estimates 3
when present estimates
have high standard error

/)’ Coefficient
(@]

Bayesian

Coefficient Estimate

m Maximum Likelihood
Coefficient Estimate

: [+/- 95% CI]

13-24 37-48 61-72

Time (Hours)



Results

The Sequential Logistic Regression with DBN had the best overall prognostic performance
when compared to several baseline approaches.

Model Features Temporal AUC TPR TPR
Assumptions FPR=0.05 FPR=0.01
Logistic Regression 5 Clinical, 10 EEG Kalman Filter 0.86 0.49 0.29
Logistic Regression 5 Clinical, 10 EEG Independent 0.84 0.46 0.26
Logistic Regression 10 EEG Kalman Filter  0.83 0.47 0.25
Random Forest 5 EEG [2] Independent 0.82 0.44 0.21
Logistic Regression 10 EEG Independent 0.81 0.44 0.19

Logistic Regression 5 Clinical None 0.73 0.26 0.11
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Calibration
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 The DBN approach
was the best
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 The direction of
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Feature coefficients over time

Model coefficients evolve over time in a sensible way, and are interpretable.

Shannon Entropy Epileptiform Spikes Phase Lag Index
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Feature coefficients over time

Entropy 1 std above the mean at 12 hours - 0.33 times as likely to have a bad outcome

Shannon Entropy
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Feature coefficients over time

Entropy 1 std above the mean at 48 hours = 0.5 times as likely to have a bad outcome

Shannon Entropy

12 24 36 48 60 72



Feature coefficients over time

Epileptiforms 1 std below the mean at 12 hours > 1.1 times as likely to have a bad outcome

Epileptiform Spikes




Feature coefficients over time

Epileptiforms 1 std below the mean at 48 hours = 2.2 times as likely to have a bad outcome

Epileptiform Spikes




Feature coefficients over time

PLI 1 std below the mean at 12 hours - 1.5 times as likely to have a bad outcome

Phase Lag Index

12 24 36 48 60 72



Feature coefficients over time

PLI 1 std below the mean at 48 hours - 3 times as likely to have a bad outcome

Phase Lag Index

12 24 36 48 60 72



Pros/Cons of the Approach

» Advantages
» Features are lightweight: 10 in total
* Model is interpretable and may aid providers without formal deployment

» Excellent LOOCYV prognostication performance relative to baselines

 Disadvantages
« Without ‘memories’, performance decreases over time
» Possibility that important features were overlooked

* Does not account for spatial information



Three Approaches

Feature Based:

Data Driven

* 3. Deep neural networks



Limitations of the feature-based approaches

* Requires thoughtful pre-processing pipeline
* Requires computation of features
* By averaging over channels, features eliminate spatial information

 Possibility that certain features might have been missed



Motivation
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Motivation

* Deep Neural
Networks provide an
potential solution to
this problem because
they derive features
from the data
automatically




Deep Networks

n = 724 patients

4 topographic energy plots:
[0-3, 4-7, 8-15, 16-31] Hz

Pseudo-subject generation

Validation:
Leave-one-institution-out



Deep Networks
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Band Topographic Images (Mean) Outcome
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4 topographic energy plots:
[0-3, 4-7, 8-15, 16-31] Hz

* Pseudo-subject generation

« Validation:
Leave-one-institution-out

12 18 24 30 36 42 48 54 60 66 72

Time (Hours)



Deep Networks 20db - 10db

Band Topographic Images (Mean) Outcome

n = 724 patients
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Deep Networks

-20db -- 10db
Band Topographic Images (Mean) Outcome
* N =724 patients
* 4 topographic energy plots:
[0-3, 4-7, 8-15, 16-31] Hz
* Pseudo-subject generation o RN o
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Validation:
Leave-one-institution-out
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Deep Networks

-20db -- 10db

Band Topographic Images (Mean) Outcome

n = 724 patients

4 topographic energy plots:
[0-3, 4-7, 8-15, 16-31] Hz

Pseudo-subject generation

Validation:
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Deep Networks

n = 724 patients

4 topographic energy plots:

[0-3, 4-7, 8-15, 16-31] Hz
Pseudo-subject generation

Validation:
Leave-one-institution-out

One Sample




Deep Networks

n = 724 patients

4 topographic energy plots:
[0-3, 4-7, 8-15, 16-31] Hz

Pseudo-subject generation

Validation:
Leave-one-institution-out
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Figure 8.3: Pseudo-patient Generation.

Pseudo-patient n,
Each patient's data was transformed into a set of 600

pseudo-subjects. A pseudo patient is generated by randomly
selecting one topographical image (uniformly and at random),
per-hour of patient data, for the first 72 hours post-arrest.
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per-hour of patient data, for the first 72 hours post-arrest.
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Deep Networks

» 300 topologies were tested

outcome

« 100, 2 Dimensional
Convolutional Neural Networks

« 100, 3 Dimensional
Convolutional Neural Networks

* 100, Long-term Recurrent
Convolutional Networks



Results

* 3D CNNs provide
performance on
par with the best-
performing
feature-based
approaches.

TPR] TPR| TPR|
AUROC ppr—0  FPR=1% FPR=5%

Neural Networks

2D CNN 0.71 (0.09)

**3D CNN 0.81 (0.04)

LRCN 0.79 (0.08)
SVM

*Linear 0.76 (0.13)

Quadratic 0.72 (0.14)

Fine Gaussian 0.75 (0.14)

Medium Gaussian 0.56 (0.03)

Coarse Gaussian 0.71 (0.13)
Discriminant Analysis

Linear 0.77 (0.15)

*Quadratic 0.78 (0.14)

Cubic 0.72 (0.13)
Decision Trees

Simple 0.68 (0.11)

Medium 0.7 (0.09)

Complex 0.69 (0.07)

*RUS Boosted 0.8 (0.1)

Ensemble Boosted 0.74 (0.12)

Ensemble Bagged

0.77 (0.1)



Results

* 3D CNNs provide
performance on
par with the best-
performing
feature-based
approaches.

TPR| TPR| TPR|
AUROC " ppr—0  FPR=1% FPR=5%

Neural Networks

2D CNN 0 (0.0)

**3D CNN 0.24 (0.05)

LRCN 0.19 (0.11)
SVM

*Linear 0.17 (0.18)

Quadratic 0.14 (0.09)

Fine Gaussian 0.18 (0.14)

Medium Gaussian 0.01 (0.02)

Coarse Gaussian 0.07 (0.12)
Discriminant Analysis

Linear 0.21 (0.13)

*Quadratic 0.22 (0.13)

Cubic 0 (0)
Decision Trees

Simple 0 (0)

Medium 0.05 (0.11)

Complex 0 (0)

*RUS Boosted 0.25 (0.2)

Ensemble Boosted 0.12 (0.17)

Ensemble Bagged

0.09 (0.14)



Results

* 3D CNNs provide
performance on
par with the best-
performing
feature-based
approaches.

TPR| TPR| TPR|
AUROC " ppr—0  FPR=1% FPR=5%

Neural Networks

9D CNN 0.09 (0.06)

**3D CNN 0.30 (0.05)

LRCN 0.34 (0.15)
SVM

*Linear 0.21 (0.16)

Quadratic 0.16 (0.09)

Fine Gaussian 0.2 (0.12)

Medium Gaussian 0.01 (0.02)

Coarse Gaussian 0.08 (0.12)
Discriminant Analysis

Linear 0.23 (0.14)

*Quadratic 0.25 (0.14)

Cubic 0 (0)
Decision Trees

Simple 0 (0)

Medium 0.05 (0.11)

Complex 0 (0)

*RUS Boosted 0.25 (0.2)

Ensemble Boosted 0.12 (0.17)

Ensemble Bagged

0.11 (0.13)



Results

* 3D CNNs provide
performance on
par with the best-
performing
feature-based
approaches.

TPR| TPR| TPR|
AUROC ppr—0  FPR=1% FPR=5%
Neural Networks
9D CNN 0.23 (0.10)
**3D CNN 0.45 (0.09)
LRCN 0.48 (0.15)
SVM
*Linear 0.32 (0.19)
Quadratic 0.26 (0.12)
Fine Gaussian 0.31 (0.19)
Medium Gaussian 0.06 (0.04)
Coarse Gaussian 0.15 (0.1)
Discriminant Analysis
Linear 0.34 (0.25)
*Quadratic 0.4 (0.22)
Cubic 0.15 (0.24)
Decision Trees
Simple 0 (0)
Medium 0.11 (0.16)
Complex 0 (0)
*RUS Boosted 0.39 (0.17)
Ensemble Boosted 0.14 (0.19)

Ensemble Bagged

0.22 (0.15)




Pros/Cons of the Approach

» Advantages

* No feature engineering

* No pre-processing required

« Performance is on par with, or exceeds, feature-based approaches
 Disadvantages

* Requires 72 hours of data

* Requires tuning of 300K+ parameters

* Models are difficult to interpret
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Choosing a model for deployment

EEG Machine Neurological
S AMAAA— Learning Outcome
quw
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— —p
1. Collected an EEG 2. Demonstrated 3 3. Deployable
archive 2x larger time-sensitive
than largest set approaches that
previously described out-perform

in the literature state-of-the-art



Criteria for deployment

* Interpretable

« Clear why model has provided the prognostication at hand

 Robust

* Robust to issues of missing data (e.g. lost channels)

 Well-calibrated

» Accurate mapping between predicted and actual probabilities of outcome



Proposed model for deployment:
sequential logistic regression with DBN constraints

12 24 36 48 60 72
Hours Hours Hours Hours Hours Hours

_ |100% 1 1 1 1 1 I
O
Gge 81 ) 8
Gender Male )
Arrest Rhythm  Shockable 'S
Arrest Location Out of Hospital 2
Time to ROSC 6 Minutes o)
Outcome Bad %
N g

A

Hours Since Cardiac Arrest



Choosing a model for deployment

EEG Machine Neurological
S AMAAA— Learning Outcome
quw
g %
— —p
1. Collected an EEG 2. Demonstrated 3 3. Deployable
archive 2x larger time-sensitive
than largest set approaches that
previously described out-perform

in the literature state-of-the-art



Assessing performance: classification and calibration

EEG Machine Neurological
Learning Outcome
g °
1. Collected an EEG 2. Demonstrated 3 3. Our proposed
archive 2x larger time-sensitive approach provides
than largest set approaches that excellent classification,
previously described out-perform is well-calibrated, and

in the literature state-of-the-art Interpretable



Summary

Collected 785 PAC patients from five university affiliated hospitals
35,000 hours of 21-channel continuous EEG recordings,
e A selection of clinical covariates and an ordinal measure of

Extracted 57 quantitative EEG features that capture three signal properties
* Complexity: the degree of randomness in the EEG signal,
 (Category: qualitative descriptors of signal characteristics or behaviours and
* Connectivity: interactions between EEG electrodes.

Tested novel methods for time-sensitive classification of outcomes
* Penalized, sequential, logistic regression using 57 multi-scale features,
 Logistic regression using 10 gEEG features constrained by a DBN and
* Avariety of deep neural network architectures
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Complexity

Step Function Sin(A) Sin(A) + Sin(B) + Sin(C)  Deterministic Chaos Uniform Noise

Shannon
Entropy
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Category

Low Voltage

Normal

Diffuse

Slow

Epileptiform

Burst
Suppresion
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Connectivity

g(t) = 2 (1)

Granger
Causality

Mytual .
Information
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Phase Lag
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