
Life After Death:
Techniques for the rapid prognostication of 

post-anoxic coma patients.

Mohammad M. Ghassemi
Massachusetts Institute of Technology



Cardiac arrest affects 320K people in the US annually

320,000

Cardiac 
Arrest



128K patients are successfully resuscitated 

Time without
Spontaneous
circulation 

Cardiac 
Arrest

320,000
128,000

Successful 
resuscitation



100K enter an indefinite, anoxia-induced coma

Time without
Spontaneous
circulation 

320,000
128,000

Successful 
resuscitation

100,000

Anoxic
Coma

Cardiac 
Arrest



10K will survive, but only 5K will regain normal function
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Goals of prognostication
• Primary: Prevent premature withdrawal care

• Secondary: Prevent unnecessary care 
(up to $20,000 per day in ICU)



Current Prognostic Guidelines

The American Academy of Neurology

• A sequence of clinical observations 
and tests performed following 
cardiac arrest

• Accurate in predicting poor 
neurological outcomes when severe 
deficits are present (FPR < 1%)

• Less guidance in cases where 
clear-cut signs are lacking, or under 
varying protocols (e.g. therapeutic 
hypothermia)
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• Limited Sample Sizes: larger samples are needed

• Time Specific: prediction should be possible at all points in time

• Classification focused: risk scoring may be better

• EEG alone can provide state-of-the-art performance

• deep learning could eliminate the need for feature engineering

Conclusions
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EEG data

• 5 contributing institutions 

• 785 unique patients

• 7 terabytes of data

• Over 2x larger than 
existing archives 
described in the literature
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Clinical Feature	(Mean) Good Outcomes Bad	Outcomes 

Age (Years) 57 63
Gender (%	Male) 68 68
ROSC (Mins) 19.47 25.7
Rhythm	at	Arrest	(%)

VFib 69 34
Other	(PEA /	Asystole) 25 61
Unknown 6 5
Cause	of	Arrest	(%)

Pulmonary 50 34
Anesthesia 3.6 8.5
Neurologic 9.6 13.8
Other/Unknown	(%) 36.8 43.7
Arrest	Location

In	Hospital	(%) 9 11
Out	of	Hospital	(%) 63 56
Unknown	(%) 28 33

Clinical Characteristics



• Average Age:  60 

• Older patients do worse
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• 68% Male 

• No difference w.r.t. outcome 
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• Average ROSC time: 23 mins 

• Longer time to ROSC is bad
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• 50% have Vfib arrest rhythm 
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• Location often unknown

• Most are outside hops.
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Clinical Feature	(Mean) Good Outcomes Bad	Outcomes 

Age	(Years) 57 63
Gender (%	Male) 68 68
Time	to ROSC (Mins) 19.47 25.7
Rhythm	at	Arrest	(%)

VFib 69 34
Other 25 61
Unknown 6 5
Cause	of	Arrest	(%)

Pulmonary 50 34
Anesthesia 3.6 8.5
Neurologic 9.6 13.8
Other/Unknown	(%) 36.8 43.7
Arrest	Location

In	Hospital	(%) 9 11
Out	of	Hospital	(%) 63 56
Unknown	(%) 28 33



Neurological
Outcome

EEG Machine 
Learning

1.   ‘Bigger’ data sets

Data Collection

2. Time-sensitive 3. Deployable   



3. Deployable   

Neurological
Outcome

EEG Machine 
Learning

Data Collection

2. Time-sensitive1. Collected an EEG 
archive 2x larger 
than largest set 
previously described 
in the literature



3. Deployable   

Neurological
Outcome

EEG Machine 
Learning

Develop time-sensitive modeling approaches

2. Time-sensitive1. Collected an EEG 
archive 2x larger 
than largest set 
previously described 
in the literature
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57 features to describe three signal qualities
• Complexity (21 features)

• Category (31 features)

• Connectivity (7 features)
e.g. cross correlation

More is considered bad

More connected

Less connected



Feature-outcome relationship is time-dependent

The mean and standard error of three features for the study population, partitioned by outcome
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Feature-outcome relationship is time-dependent
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Feature-outcome relationship is time-dependent

Regularity (a measure of burst-suppression) distinguishes ‘Good’ and ‘Bad’ earlier
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Feature-outcome relationship is time-dependent

Cross correlation (a measure of complexity) distinguishes ‘Good’ and ‘Bad’ later
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Conclusion
• The features-outcome relationship changes over time

• Needs modelling approach where coefficients evolve over time



Three Approaches
Two Feature Based:

• 1. Sequential Logistic Regression with ‘Elastic’ memories

• 2. Sequential Logistic Regression with Dynamic Bayesian network constraints

One Data Driven

• 3. Deep neural networks



Logistic Regression with Elastic Memories

• n = 438 patients

• We used 52/57 features

• Validation: 10-fold



Logistic Regression with Elastic Memories

• We train a series of models 
that classify patient outcomes, 
in particular time intervals:

1-12 hours
13-24 hours
25-36 hours etc.



Logistic Regression with Elastic Memories

• Features are extracted at 
particular time intervals

• 1-12 hours



Logistic Regression with Elastic Memories

• Features are extracted at 
particular time intervals

• 13- 24 hours



Logistic Regression with Elastic Memories

• Features are extracted at 
particular time intervals

• 25-36 hours, and so on…



Logistic Regression with Elastic Memories

• Features used by models in 
earlier time intervals are 
passed forward as ‘memories’ 
for models in future time 
intervals



Logistic Regression with Elastic Memories

• Features used by models in 
earlier time intervals are 
passed forward as ‘memories’ 
for models in future time 
intervals



Logistic Regression with Elastic Memories

• Features used by models in 
earlier time intervals are 
passed forward as ‘memories’ 
for models in future time 
intervals



Logistic Regression with Elastic Memories

• We retain only the most 
important features using 
Elastic Net

• Penalizes the size of the 
regression coefficients based 
on both their 𝑙" norm and their 
𝑙# norm :

𝒂𝒓𝒈𝒎𝒂𝒙𝜷*𝐥𝐨𝐠	𝑳(𝒚𝒊, ; 𝜷, 𝒙𝒊)
�

𝒊

− 𝝀[𝜶 𝜷 𝟏 +	
𝟏
𝟐
(𝟏 − 𝜶) 𝜷 𝟐

𝟐]



Logistic Regression with Elastic Memories

• A logistic regression model 
with the selected features is 
used to evaluate performance 
on the held out test-sets



Logistic Regression with Elastic Memories

• A logistic regression model 
with the selected features is 
used to evaluate performance 
on the held out test-sets

• This process was designed to 
imitate how providers might 
perform prognosis



Coefficients Mat Reflect Three Kinds of Relationships

• An immediate value is most predictive of outcomes.

• A prior value is most predictive of outcomes.

• The cumulative value is most predictive of outcomes.



Best	performing	model	
from	the	literature



Logistic	Regression	with
Elastic	net	regularization



Logistic	Regression	with
‘Elastic	memories’



Similar	performance	by	12	hours



Divergence	begins	by	36	hours



Divergence is
Greatest at 
hour 72

‘Memories’ allow
For continuous
prognostication
improvement



Calibration

• Our approach 
exhibited enhanced 
calibration compared 
to the literature 
baseline

• This allows for a more 
nuanced use of the 
model, compared to 
existing approaches
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Pros/Cons of the Approach
• Advantages

• Does not require time of arrest

• Prognostic performance improves over time using ‘memories’

• Well calibrated

• Disadvantages
• Alignment with respect to EEG initiation harm physiological interpretations

• Assumes that feature coefficients in neighboring intervals are independent

• Does not account for spatial information



Three Approaches
Two Feature Based:

• 1. Sequential Logistic Regression with ‘Elastic’ memories.

• 2. Sequential Logistic Regression with Dynamic Bayesian network constraints

One Data Driven

• 3. Deep neural networks
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Logistic Regression with DBN

• We extracted features in 
12 hour intervals:

• etc…

Nn-

N-1 subjects



Logistic Regression with DBN

• We learn parameters of several 
logistic regressions: coefficient 
measures

• With corresponding coefficient 
measure errors s  ,which are 
simply the standard errors

N-1 subjects



Logistic Regression with DBN

• To relate the coefficient 
measurements across time 
intervals, we specify a model of 
coefficient dynamics which
provide coefficient estimates 

• With estimate error denoted by 

N-1 subjects



Logistic Regression with DBN

• A simple DBN (the kalman filter) 
recursively determine the 
optimal coefficient estimates

• With coefficient uncertainty

N-1 subjects



Logistic Regression with DBN

• DBN estimates rely more 
strongly on prior estimates 
when present estimates 
have high standard error



Results

The Sequential Logistic Regression with DBN had the best overall prognostic performance 
when compared to several baseline approaches.  



Results over time

• The DBN approach
had the best 
performance over 
time (peak AUC: 0.87)

• performance 
decreases over time 
(min AUC: 0.84)



Calibration

• The DBN approach
was the best 
calibrated of the 
tested approaches

• The direction of 
mis-calibration was 
‘optimistic’, tending to 
over-estimate ‘good’ 
outcomes.



Feature coefficients over time

Model coefficients evolve over time in a sensible way, and are interpretable.
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Feature coefficients over time

Epileptiforms 1 std below the mean at 12 hours à 1.1 times as likely to have a bad outcome



Feature coefficients over time

Epileptiforms 1 std below the mean at 48 hours à 2.2 times as likely to have a bad outcome



Feature coefficients over time

PLI 1 std below the mean at 12 hours à 1.5 times as likely to have a bad outcome



Feature coefficients over time

PLI 1 std below the mean at 48 hours à 3 times as likely to have a bad outcome



Pros/Cons of the Approach
• Advantages

• Features are lightweight: 10 in total

• Model is interpretable and may aid providers without formal deployment

• Excellent LOOCV prognostication performance relative to baselines

• Disadvantages
• Without ‘memories’, performance decreases over time

• Possibility that important features were overlooked

• Does not account for spatial information



Three Approaches

Feature Based:

• 1. Sequential Logistic Regression with ‘Elastic’ memories.

• 2. Sequential Logistic Regression with Dynamic Bayesian network constraints

Data Driven

• 3. Deep neural networks



Limitations of the feature-based approaches

• Requires thoughtful pre-processing pipeline

• Requires computation of features

• By averaging over channels, features eliminate spatial information

• Possibility that certain features might have been missed



Motivation

• Even if all 57 features 
were used, 
derivatives of 
features may be 
useful features



• Deep Neural 
Networks provide an 
potential solution to 
this problem because 
they derive features 
from the data 
automatically

Motivation



Deep Networks

• n = 724 patients

• 4 topographic energy plots: 
[0-3, 4-7, 8-15, 16-31] Hz

• Pseudo-subject generation

• Validation: 
Leave-one-institution-out

Nn-
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Deep Networks

• 300 topologies were tested

• 100, 2 Dimensional 
Convolutional Neural Networks

• 100, 3 Dimensional 
Convolutional Neural Networks 

• 100, Long-term Recurrent 
Convolutional Networks

t = 1 t = 2 t = 72

…

…
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Pros/Cons of the Approach
• Advantages

• No feature engineering

• No pre-processing required

• Performance is on par with, or exceeds, feature-based approaches

• Disadvantages
• Requires 72 hours of data

• Requires tuning of 300K+ parameters 

• Models are difficult to interpret
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Criteria for deployment
• Interpretable

• Clear why model has provided the prognostication at hand

• Robust

• Robust to issues of missing data (e.g. lost channels)

• Well-calibrated

• Accurate mapping between predicted and actual probabilities of outcome



Proposed model for deployment: 
sequential logistic regression with DBN constraints
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Neurological
Outcome

EEG Machine 
Learning

Assessing performance: classification and calibration

2. Demonstrated 3  
time-sensitive 
approaches that 
out-perform 
state-of-the-art

3. Our proposed
approach provides
excellent classification,
is well-calibrated, and
Interpretable

1. Collected an EEG 
archive 2x larger 
than largest set 
previously described 
in the literature



Summary

Collected	785	PAC	patients	from	five	university	affiliated	hospitals
• 35,000	hours	of	21-channel	continuous	EEG	recordings,	
• A selection	of	clinical	covariates	and	an	ordinal	measure	of	

Extracted	57	quantitative	EEG	features	that	capture	three	signal	properties
• Complexity:	the	degree	of	randomness	in	the	EEG	signal,
• Category:	qualitative	descriptors	of	signal	characteristics	or	behaviours	and
• Connectivity:	interactions	between	EEG	electrodes.

Tested	novel	methods	for	time-sensitive	classification	of	outcomes
• Penalized,	sequential,	logistic	regression	using	57	multi-scale	features,
• Logistic	regression	using	10	qEEG features	constrained	by	a	DBN	and
• A variety	of	deep	neural	network	architectures
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