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Abstract— Deep learning has achieved remarkable results
in the areas of computer vision, speech recognition, natural
language processing and most recently, even playing Go. The
application of deep-learning to problems in healthcare, however,
has gained attention only in recent years, and it’s ultimate
place at the bedside remains a topic of skeptical discussion.
While there is a growing academic interest in the application of
Machine Learning (ML) techniques to clinical problems, many
in the clinical community see little incentive to upgrade from
simpler methods, such as logistic regression, to deep learning.
Logistic regression, after all, provides odds ratios, p-values and
confidence intervals that allow for ease of interpretation, while
deep nets are often seen as ’black-boxes’ which are difficult to
understand and, as of yet, have not demonstrated performance
levels far exceeding their simpler counterparts. If deep learning
is to ever take a place at the bedside, it will require studies which
(1) showcase the performance of deep-learning methods relative
to other approaches and (2) interpret the relationships between
network structure, model performance, features and outcomes.
We have chosen these two requirements as the goal of this
study. In our investigation, we utilized a publicly available EMR
dataset of over 32,000 intensive care unit patients and trained
a Deep Belief Network (DBN) to predict patient mortality at
discharge. Utilizing an evolutionary algorithm, we demonstrate
automated topology selection for DBNs. We demonstrate that
with the correct topology selection, DBNs can achieve better
prediction performance compared to several bench-marking
methods.

I. INTRODUCTION
While the term ’Big Data’ became popular only a couple

years ago, the use of big data in many industries has been
ongoing for decades. Over the course of the last several
years industries including insurance, banking and telecom-
munications have grown steadily reliant on data for decision
making and process control. Unlike the steady growth in
reliance seen in other industries, the medical community’s
relationship with data, and the retrospective approach to
quality improvement, has been more of a sudden onset than a
gradual process. This reality comes as no surprise when one
considers that the electronic collection, storage and analysis
of health-care data is still a relatively new phenomenon.
Low data volumes are not the only issue that make Health-
care data challenging. Many publicly available datasets are
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artifact ridden, heterogeneous, high dimensional, and tem-
porally dependent. This reality poses challenges for machine
learning practitioners that are interested in utilizing the data
to provide decision support.
Most practitioners of applied machine learning acknowledge
that feature extraction and data pre-processing account for a
substantial component of the time and effort of any standard
research project, and the health-care domain is no exception.
As volumes of data grew in non-healthcare domains, we
have observed the rise of a field which attempts to automate
the feature extraction process itself - representation learning.
’Deep learning’ describes a class of representation learning
methods inspired by the muti-layered neural networks of the
human brain. In recent years, deep learning methods have
been applied to various AI problems in the areas of computer
vision, speech recognition and natural language processing
where they achieved impressive results [1].

The speech community was the first to leverage the
power of representation learning for practical purposes, and
demonstrated tremendous increases in the efficacy of speech
recognition when using ’deep’ techniques compared to the
then state-of-the-art (Gaussian Mixture Models). In some
cases, the community saw as much as a 50% reduction in
error on essential benchmark data sets. These advances made
end-user technologies, such as Apples Siri, a reality. Since
then, ’deep’ techniques have infiltrated practically every
application area imaginable, with clinical decision support
being a notable exception.

Deep learning has also been applied to several health-
related problems, including the diagnosis of liver cancer,
diabetes, heart-failure [2], tumor segmentation [3] and trans-
plant acceptance [4]. Despite this work, there is clinical
resistance to adopting deep learning for decision support due
to a perceived lack of evidence that the ’deep’ techniques ac-
tually outperform their simpler counterparts, such as logistic
regression.

If it is not utilized with care, this critique of deep learning
is valid. Indeed, many out-of-the-box ’deep’ networks require
(1) datasets with large degrees of freedom, which is almost
never the case in clinical data (the human genome alone has
more features than all the financial indicators of the world
combined) and (2) an optimal network topology to ensure
optimal network performance [5].

While the first issue may be reasonably addressed via
manual feature selection, the second issues is all too often
left undressed. Important features of deep networks, such
as the number of layers, and the number of nodes within
each layer and the connectivity structure are selected using
investigator intuition as opposed to principled optimization.
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In this study, we will (1) explore the effects of network
topology on the performance of a Deep Learning algorithm
to predict critical care patients’ 28-day mortality and (2)
demonstrate how techniques in global optimization may be
utilized to automatically determine network topology.

II. METHODS

A. Areas of Exploration

Data As deep learning methods represent data with mul-
tiple layers of abstractions, they require large amount of
training data to obtain stable and reliable features. We will
explore whether the Electronic Medical Record (EMR) data
routinely collected for care purpose are sufficient for deep
learning methods to achieve reasonable performance. A real-
world EMR dataset on critical care patients will be used.

Topology Neural networks are the most common deep
learning architecture. It has been reported that the topology,
or structure, of the neural networks greatly affects their
functionality [5]. We aim to discover the optimum topology
through an evolution algorithm.

Computational Complexity Learning the connection
weights of the deep neural networks are known to be
computationally expensive. Experiments will be conducted
on computational clusters to measure the computational time
and memory needed for deep neural network training.

Learning Task Deep learning methods can be applied to
many learning tasks, such as detection, forecasting, predic-
tion, etc. We will focus on the application of deep learning
for a predictive model in this study. To be specific, we
apply deep learning to predict critical care patients’ 28-day
mortality based on their continuously collected EMR data.

B. Data & Problem Statement

Data for this study was extracted from the publicly avail-
able Multiparamter Intelligent Monitoring in Intensive Care
database (MIMIX-II) [6]. MIMIC-II is a publicly available
clinical database developed by the Massachusetts Institute
of Technology (MIT), Phillips Healthcare, and Beth Israel
Deaconess Medical Center (BIDMC). The database contains
de-identified EMR data from over 32,000 critically ill pa-
tients treated in the ICUs at the BIDMC from 2001 to 2008.

To explore the feasibility and effectiveness of deep learn-
ing methods on health analytics problems, we applied a
deep learning model to predict the 28-day mortality of
critical care patients in the MIMIC-II database. Mortality
prediction [7] is a very common problem in healthcare
analytics, and was chosen for it’s simplicity. although this
study focuses on mortality predictions, most of our findings
can be easily generalized to other predictive problems in
health-care analtyics.

We extracted a total of 73 clinical variables from the
MIMIC-II dataset:

• Demographic and Severity: age, gender, weight,
critical service type (medical/surgical/cardiac/recovery),
Simplified Acute Physiology Score (SAPS) [8], Sequen-
tial Organ Failure Assessment (SOFA) Score [9] and
Glasgow Coma Score (GCS)
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Fig. 1. Deep Belief Network with both unsupervised and supervised layers.

• Co-morbidity: all 23 co-morbidities used to calculate
the Elixhauser score [10]. All these chronic conditions
are judged based on the patients’ assigned International
Classification of Diseases (ICD-9) codes.

• Lab results at Admission: Albumin, ALP (Alkaline
phosphatase), ALT (Alanine transaminase, AST (Aspar-
tate transaminase), Bilirubin, BUN (Blood urea nitro-
gen), Cholesterol, Creatinine, Glucose, HCO3 (Serum
bicarbonate, HCT (Hematocrit), K (Serum potassium,
Lactate, Mg (Serum magnesium), Na (Serum sodium),
PaCO2 (partial pressure of arterial CO2, PaO2 (Partial
pressure of arterial O2, pH, Platelets, Troponin, WBC
(White Blood Cell count),

• Vital Signs (Median Values of first 24 hours): Heart
Rate, Temperature, Mean Arterial Blood Pressure, Oxy-
gen Saturation and Spontaneous Respiration Rate

• Interventions: Usage of mechanical Ventilation, Vaso-
pressor and sedative medications

We only utilized data from the first ICU admissions of
every patient in the MIMIC data. We also removed patients
missing any of our selected clinical variables. Following
this exclusion criteria, our final data-set included 15,647
unique patients. All data was partitioned into training (60%),
validation (20%) and testing sets (20%). All experiments
were conducted on a computational cluster with 16 nodes,
each node has 2*8 cores of 2.0GHz CPUs and 64 GB of
memory. All BDN neural networks were implemented in
Matlab using the toolbox described in [11].

C. Deep Belief Network

Deep learning methods aim to automatically learn feature
relationships at multiple levels of abstraction, where features
at higher levels in network are composed of features from
lower levels [12]. Deep Belief Networks (DBN) [13] are a
variety of unsupervised probabilistic generative models. As
shown in Figure 1, DBNs are composed of multiple layers
of hidden units/nodes that form a hierarchical abstraction of
the input data. The output of DBNs are often connected to
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Fig. 2. Encoding various Deep Belief Network topologies with species shared genomes and individual genomes.

one or more supervised layers for classification.
Training DBNs can be computationally expensive as the

number of nodes and hidden layers grow. Hinton et al [13]
discovered that DBNs can be viewed as a compositions
of Restricted Boltzmann Machines (RBMs), where each
unsupervised hidden layer can be trained independently using
the previous layer as observed input data. The process of
the greedy layer-wise unsupervised training is performed as
follows:

I. Train the first layer of DBN as an RBM that models the
raw input x.

II. Use that first layer to obtain a representation of the
input that will be used as data for the second layer.

III. Train the second layer as an RBM, taking the
transformed data (samples or mean activation) as training
examples (for the visible layer of that RBM).

IV. Iterate (II and III) for the desired number of layers,
each time propagating upward either samples or mean values.

V. Append additional layers to the trained DBN for super-
vised predictions and fine-tune all the parameters of this deep
architecture with respect to the supervised training criterion
performance.

D. Evolutionary Algorithm for Network Topology Optimiza-
tion

An optimal network topology is crucial to ensure opti-
mal performance of DBNs[5]. The search space for DBN’s
network topology is, in theory, infinite. In this study, we
employed an evolutionary algorithm (Genetic Algorithm) to
discover an optimal network topology. In [14], researchers
successfully demonstrated how an evolutionary algorithm
could be applied to identify the topology of a neural network
capable of completing a level of Super Mario on its own.
We apply a similar approach in determining our network
topology in this study.

An evolutionary algorithm is a type of optimization
method that emulates nature’s evolution process, i.e. gen-
erating and selecting the best solution based on the ’survival
of the fittest’ principle. As illustrated in Figure 2, we use
binary codes to encode the parameters of DBN topoloy into
a genome. Candidates in the populations are grouped into
species, where individuals from the same species share a
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Fig. 3. Exhaustive search for the optimum network topology of neural
network with two hidden layers.

portion of genome that encodes the number of hidden unsu-
pervised and supervised layers. An individual genome then
contain codes for the number of nodes in the corresponding
hidden layers and their activation functions. As a result, one
can observe from Figure 2 that different species will have
different length of genomes. The evolutionary process for the
optimum topology is as follows:

I. Initialize the population by randomly generating M
species and N individual candidates among each species.

II. Evaluate the prediction performance of all DBN
topologies coded with candidate genomes.

III. Select the top p% candidates based on their perfor-
mance as the survivors and discard all the rest. Species with
small population become extinct.

IV. Evolve the surviving candidates through: (1) mutations
on both the species shared and individual genomes and (2)
breeding (exchange, merge or replace genomes) within and
across species.

V. Iterate steps II to IV until the performance of can-
didates start to converge and report the best performance
genome.

III. EXPERIMENTS AND RESULTS

A grid search that exhausts every possible topology of
a two layer fully connected network was conducted to
illustrate how variations in network topology can impact the
performance of neural networks. Figure 3 summarizes the
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Fig. 4. The Evolutionary algorithm’s iterative performance for optimum
network topology identification. The red dotted line in the figure indicates
convergence of the best performance over the generations.

results, where the maximum number of nodes was set to 150
for each layer. We observe that although the nature of the
surface is rough, there are some general trends. The accuracy
of the network is more strongly related to the number of
hidden nodes in the first layer, compared to the second.

As the search space grows quadraticly with the number
of nodes in each layer, it is not practical to apply an
exhaustive search for topology optimization in large topo-
logical domains. The grid search for just the two layer
network took approximately 4 hours. Hence, we applied the
evolutionary algorithm for topology test on a larger domain
(with maximum number of nodes set to 1000). As shown in
Figure 4, the evolutionary algorithm converged after 172 gen-
eration, (4.75 hours). The mortality prediction performance
of the learned DBN was compared against a number of
benchmarking methods:the Support Vector Machine (SVM)
and the Gradient Boosting Model (GBM).

We observe in Table I that the optimized DBN achieved a
modest improvement in classification accuracy compared to
the SVM and Gradient Boosting baselines. Importantly, our
results in Figure 3 show that without topological optimiza-
tion, the DBN may actually under-perform both baselines.
These results highlight the importance of global optimization
approaches when utilizing deep learning procedures. Indeed,
with further optimization of the network topology, we ex-
pect even greater improvements in model performance. For
example, In this study we assumed that the network was
fully connected, and that each layer share the same activation
function. In future studies, we may expand the evolutionary
optimization algorithm to identify the connectivity and acti-
vation functions of the network as well.

IV. CONCLUSIONS AND FUTURE EXPLORATIONS

DBN (or deep learning networks in general) can be a
promising method to model and extract the implicit cor-
relations among clinical variables when utilized correctly.
In this work, we demonstrated how to use an evolutionary
algorithm to search for an optimum network topology. This
work is meant to serve as a simple illustration of how
techniques in global optimization can be used to arrive at a
correct network topology. The same technique may be used
to derive optimal topological structures far nuanced than the
number of nodes in a two layer system. Indeed, the number

TABLE I
COMPARISON OF PREDICTION ACCURACY AND REQUIRED RUN TIME

FOR THE DBN WITH GA TOPOLOGY OPTIMIZATION, SVM, AND

GRADIENT BOOSTING MODEL.

Model Accuracy(%) RunTime (hrs)
DBN (with GA) 86.0 4.75

SVM 84.0 1.04
Gradient Boosting 85.5 0.57

of layers, their connectivity structure, number of nodes and
activation functions for each node can and should all be
selected via global optimization procedures. We hope that our
work here inspires other users of deep learning in the clinical
informatics community to more robustly select their network
topology, generating better performance in important clinical
tasks, and bringing an era of deep learning in medicine one
step closer.
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