A Visualization of Evolving **Clinical Sentiment** Using Vector Representations of Clinical Notes

Mohammad M. Ghassemi, MIT Roger G. Mark, MIT Shamim Nemati, Emory University

- Motivation
- Hypothesis

INTRODUCTION

Clinical Notes are Shaped by Clinicians' Sentiment

Hypothesis

The judgment of care providers is driven by comprehensive observations of the patient, and this judgment may be reflected in the <u>structural complexity</u> and <u>sentiment</u> of their written patient notes.

We investigate our hypothesis by analyzing the evolution of the **sentiment** and **language** use over time and patient category.

Hypothesis

The judgment of care providers is driven by comprehensive observations of the patient, and this judgment may be reflected in the <u>structural complexity and contiment</u> of their written patien - Age group - Gender - Marital Status

We investiga the evolution
Length of hospital stay Race/ethnicity
Patient Outcome
Use over time and patient category.

- Methods & Analysis
- Word2Vec Tool
- Illustration

METHODS

The Word2vec Tool

- Word2Vec describes a class of neural network models that, given an unlabeled training corpus, produce a vector for each word in the corpus that encodes it's semantic information.
- Semantic similarity is measured by cosine distance.

Individual Words in the Vector Space

Ungrouped Words

'Electrode' is Related to both Groups

What about the Sentiment Terms?

Conclusions Drawn from Illustrative Example

- There is greater positive sentiment for the <u>patient category</u> than negative sentiment
- There is greater negative sentiment for the brain group than the heart group

Sentiment Score

$$s_s = \left(\frac{s_p}{s_n} - 1\right) * 100$$

• Where Sp and Sn are the average <u>cosine similarity</u> between the 'positive' and 'negative' terms, and all other terms in the space

$$\cos(x, y) = \frac{x \cdot y}{\|x\| \|y\|}$$

• We can compare this against another metric that uses word counts

$$100 * (n_{positive}/n_{negative} - 1)$$

Complexity Score

- Track the evolution of an optimal k, in the k-means algorithm
- Where optimality is determined by the Silhouette value

Visualizations

- Distributed Stochastic Neighbor Embedding (tSNE)

 visualize distinctive word clusters
 the evolution of language structure
- Principal Component Analysis (PCA)
 characterize evolution over time

STUDY RESULTS

- Conclusions
- Findings

DAY 1

Center Words: anticoag pharmacy order subsequnet potential

DAY 1 Center Words: anticoag pharmacy order subsequnet potential

DAY 1

Center Words: anticoag pharmacy order subsequnet potential

DAY 1

Center Words: anticoag pharmacy order subsequnet potential

Day 3 Center Words: exertion tolerated alarms specimines penicilins

Day 5 Center Words: prolonged cardiac hemorrhage photo

Sentiment Score also Evolves over Time and Outcome

Sentiment over Categories

- Sentiment differences across categories
- The vector-based score is more aligned with expected results than the score that uses ratio of word counts (RWC)

Sentiment Score	RWC	Note Category
-1.98	-6.84	Deceased
0.57	63.3	Survived
0.63	72.16	Age <25
-0.31	-2.97	Age: 25 - 49
-1.36	-0.42	Age: 50 - 75
-1.82	1.65	Age >75
-0.28	2.16	Married
-0.08	5.25	Single
0.90	54.54	Female
0.39	47.59	Male
-1.07	115.51	Asian
0.14	41.06	White
0.45	62.99	African

Conclusions

- Two main findings:
 - the sentiment of clinical notes evolve over time, patient condition, and patient background
 - The structure / complexity of clinical notes also evolves
- Results arepreliminary, and will require further investigation to reach firm conclusions

Thank you

• Contact me for questions, or to collaborate!

ghassemi@mit.edu

Example: Similar Patients, Different Treatment Decisions

	Patient 1	Patient 2
Structured Data	Age = 35	Age = 35
Treatment Decision	Intubate	Don't Intubate

*Source: Multiparameter Intelligent Monitoring in Critical Care Database

Example: Similar Patients, Different Treatment Decisions

	Patient 1	Patient 2
Structured Data	Age = 35	Age = 35
Treatment Decision	Intubate	Don't Intubate
Unstructured Data	''blah blah blah''	"blah blah blah?"

*Source: Multiparameter Intelligent Monitoring in Critical Care Database

CBoW

- C word window size
- V –
 vocabulary size
- Y output word
- X input context words

tf-idf (term frequency * inverse document frequency)

- Find "the red fox"
 - Remove all documents without the words
 - Count the number of times the words show up in each document (term frequency)
 - Because 'the' is common, we may over emphasize it and need to eliminate it's effects
 - We diminish the weight of such terms using the inverse of their frequency in the set of documents (inverse document frequency).

Conclusions

- There is decreasing complexity of the language for patients who do not survive
 - This is not simply an artifact of the number of words

Word Count (Millions)	Note Category
4.44	Age <25
16.66	Age: 25 - 49
44.25	Age: 50 - 75
28.60	Age >75
21.36	Deceased
105.70	Survived
6.65	Day 1
11.32	Day 2
9.26	Day 3
8.69	Day 4
8.18	Day 5
45.08	Married
22.27	Single
32.69	Female
77.50	Male
3.95	Asian
92.87	White
13.14	African

