
Abstract - We performed feature extraction from EEG and cardiovascular waveforms for 
use in a Hidden Markov Model (HMM) sleep state classifier. We tested the efficacy of the 
sleep classifier for a simple binary case, sleep versus non-sleep, and a more complex case 
with four classes: Sleep-REM sleep non-REM, Apnea event, awake. As our aim was to 
compare the efficacy of cardiovascular features as compared to EEG features we trained 
two distinctive classifiers, one which used only EEG features, and another which used only 
cardiovascular features. In addition to the standard HMM approach; where each state 
generates one observation vector, we also implemented a clustered observation HMM, 
where each state was modelled as generating a continuous set of observation vectors. We 
noticed that this approach significantly improved the performance of the EEG based 
classifier. Lastly, we demonstrated that a classifier which included both EEG and 
cardiovascular components outperformed classifier with only one set of features. To gauge 
the efficacy of our classifier, We compared it's performance against a recently used method 
proposed by Zhang et al. We observed that our HMM classifier outperformed the Zhang 
classifier in a binary classification task (sleep versus awake) with accuracy levels of 99% as 
compared to Zhang's 89%.  

1. Introduction 

Since the introduction of the electronic medical record over a decade ago, retrospective analysis 
of medical data has provided a unique, and very low-cost way to perform hypothesis generation 
and testing in the medical community. There currently exist several clinical databases, with 
varying levels of information density. Of these, one of the richest and highest resolution 
publically available databases is MIMIC-II, which contains physiological recordings from 
several thousand patients at the Beth Israel Deaconess medical hospital from 2000 onwards, with 
over 700 users worldwide (Saeed & Al., 2011). One of the central issues with the MIMIC 
database, and other databases of its kind are a lack of comprehensive clinical annotation on the 
dynamic state of the patient during their stay. While the reason for hospital admission is clearly 
denoted, and daily summary scores of patient well-being such as SOFA or SAPS are available, it 
is difficult to extract patient cohorts on the basis of features which are not clearly measurable, 
but rather, require inference. Several of these hidden features are phenomenon of the mind and 
include a patient's state of mind, stress level or sleep stage.  

We strongly believe that the inability to access, evaluate, or observes the dynamics of these 
hidden states is detrimental to efficacious retrospective clinical research (McEwen, 2008). 
Addressing this issue will require the creation of a clinical feature annotator, with an ability to 
learn the characteristics of hidden features, based on empirical measurements and training data 
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from experienced clinical staff.  This project makes the first and most basic step in this direction 
by tacking the issue of sleep state annotation.  

To illustrate in a more concrete way the potential impact of hidden features on patient diagnosis 
we will briefly relate a project which is currently which is currently underway in the Laboratory 
of Computational Physiology, here at MIT. The team at the LCP is performing an investigation 
into the effects of circadian variation on patient state of health in the ICU. There is some 
evidence that circadian variation may be a means of understanding a patient's overall state of 
health (Lanthier et al., 2011; Vincent, 2011). A circadian variation can be defined as any 
biological process that periodically varies over a given time period. Human heart rate and blood 
pressure, for instance, are known to be subject to this form of variation, being higher while 
patients are awake, and lower when patients are asleep (Dean et al., 2012). There is evidence that 
the magnitude of this variation may be correlated with a patient's overall state of health, with 
higher variation tending to be better. Hence, if monitored, circadian variation could potentially 
allow clinicians to measure if a patient's health is deteriorating, or improving, over the course of 
their hospital stay.  

The central challenge in retrospective analysis of circadian variation is figuring out when the 
patients were asleep. One recently used strategy by Zheng et al is naive in that the sense that it 
identifies a single, continuous timeframe for when the patient was likely asleep (Zheng et al, 
2013). There are many ways to infer this timeframe, but one proposed method utilizes 
differential blood pressure and heart rate values, averaged across days. This strategy is sub-
optimal for two reasons. Firstly, it assumes that critically ill patients will be sleeping and awake 
at consistent time intervals, which is clearly unlikely. Secondly, the identification of the sleep 
state currently relies exclusively on the blood pressure and heart rate of the patient, which 
wrongfully assumes that the cardiovascular dynamics of a critically ill patient will be similar to 
those of a healthy one. (Baumgart et al., 1991) 

Hence, our specific aim in this paper is to outline an improved method for sleep state 
identification with hopes of facilitating more accurate analysis of the effects of circadian 
variation on clinical outcomes in an intensive care setting. To perform sleep state identification 
in a principled way, we propose a Hidden Markov Model approach, which would use features 
from an EEG monitoring system in addition to features from the blood pressure and EKG 
waveforms. We advocate for the use of EEG in this setting as sleep has several well-known EEG 
related signatures, and furthermore we expect less severe fluctuations in the state of a patient's 
brain during critical illness as compared to fluctuations in cardiovascular features. 

 

 

 



2. Data 

2.1 Source: All data used in this study was collected from the MIT-BIH  Polysomnographic 
Database, which is publically accessible via the Physionet project, an open source archive of 
recorded physiological signals (Goldberger et al., 2000). Our dataset included 13 subjects which 
were monitored in the Beth Israel Hospital Sleep Laboratory. Subjects were monitored for the 
evaluation of chronic obstructive sleep apnea syndrome. The subjects contained anywhere from 
4-9 physiological signal recordings, which included the Electrocardiogram (ECG), Blood 
pressure (BP), C4/A1 Electroencephalogram lead (shown in the figure below), nasal and 
abdominal respiration values among others signals. The signals of interest which all subjects had 
in common were EEG, ECG and BP waveforms. Physiological signals were sampled by a 12 bit 
analog-to-digital convertor at a sampling rate of 250Hz for a total of 6 hours (5.4 million 
samples) 

 

Figure 1: An illustration showing the location of the C4/A1 Electroencephalogram lead.  

2.2 Feature Extraction When performing time series analysis, the classical approach in signal 
processing and machine learning literature is to extract relevant features from the waveforms of 
interest. These features may then be used to train models for the purpose of prediction. If done 
properly, feature extraction maintains most of the information content in the original signals 
while compressing data size, and allowing for a more specific understanding of the features 
which are predictive of certain phenomenon. 

The primary burden of feature selection, however, is that it often requires special knowledge to 
be done most effectively. Being told that the alpha band of an EEG is a useful feature for coma 
detection and discovering that the 8-13Hz band of an unlabelled signal is important for 
predicting coma are clearly different challenges. Fortunately in our case there is vast realm of 



literature which characterizes the physiological changes that accompany sleep state, and this can 
guide our feature extraction. The most commonly cited examples of features that accompany 
sleep state are reductions in blood pressure and heart rate as well as a progressive decrease in the 
activation rate of neurons in the brain (as sleep progresses from wakefulness to non-rem sleep) 
(Dean et al., 2012; Saper, Chou, & Scammell, 2001). Neuronal activity is also known to change 
from chaotic to more coordinated during the non-rem portion of sleep (Maquet, 2001). The 
classification of REM sleep, on the other hand, is quite a different challenge and not easily 
inferred as it exhibits characteristics of the wakeful state at nearly all levels. We based our own 
features on those described above. While there are a variety of features that could potentially be 
extracted from the EKG waveform. We suspect that the most information dense feature for the 
type of classification we wished to perform was the RR-interval. The RR-interval describes the 
beat-to-beat distance and therefore provides information on the pace of cardiac contraction, 
which is known to vary as a function of sleep state. like EKG, there is more than one feature that 
can be extracted from a blood pressure waveform. We note here that the cardiovascular system 
adjusts the RR interval, primarily to control changes in blood pressure. Hence, we decided to 
extract the median blood pressure value over the RR-interval as a ways of approximating the 
waveform's behaviour. The dataset contains a single EEG recording from the C4/A1 lead, shown 
pictorially in Figure 1. We utilized a 6 level wavelet based decomposition of the EEG signal into 
its corresponding alpha, beta, gamma, theta, and delta bands. Finally we used the power content 
of the bands over the periods defined by the RR interval as our EEG features.    

2.3 Annotations and Preprocessing: As the data was collected from a sleep laboratory, it came 
with multiple annotation files for each subject. Among other things, these annotation files 
described the onset of an apnea related events, movements, and the sleep stage of the subject 
according to the Manual of Sleep Classification by Rechtschaffen and Kales in which recordings 
are divided into 7 discrete stages (wake, stage 1, stage 2, stage 3, stage 4, stage REM, and 
movement time). According to the metric outlined by Rechtschaffen and Kales, sleep annotations 
were valid for 30 sec intervals.  Hence, we reformatted the annotation files such that they 
described the annotation at a per-sample level, and thereby allowed for their use in the analysis.  

2.5 Analysis: All analysis for this project was done in the Matlab (2012b) technical computing 
language. In addition to the use of several Mathwork’s toolboxes, our approach utilized the 
Hidden Markov Model (HMM) and Bayes Net Toolbox authored by Kevin Murphy.  

 

 

 

 



3. Methods 

3.1 Classification Model We constructed our activity classifier using a 2-component Mixture of 
Gaussians model for each of the four classes 𝑆 = {𝑛𝑜𝑛𝑟𝑒𝑚, 𝑟𝑒𝑚, 𝑎𝑤𝑎𝑘𝑒, 𝑎𝑝𝑛𝑒𝑎}  

3.2 General HMM approach: The parameters of K mixture of Gaussians models may be 
optimized via the Expectation Maximization algorithm given that a set of emitted observations 
𝑂0…2  and annotated hidden state values 𝑆0…2 are known. Once the maximum likelihood values 
for the parameter sets 𝜃0…4 have been identified, classification of novel data points can then be 
performed by comparing 𝑃 𝑂 	𝑆, 𝜃7 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 ∈ {1…𝐾}. In the case of a binary classification 
task (sleep versus awake) this would equate to comparing 𝑃 𝑂 	𝑠𝑙𝑒𝑒𝑝, 𝜃?@AAB  to 
𝑃 𝑂 	𝑎𝑤𝑎𝑘𝑒, 𝜃CDCEA . While this model is certainly valid, it has the distinctive disadvantage that 
it assumes complete independence of 𝑆FG0 from 𝑆F. A more realistic assumption would be that 
the system stochastically transitions to a new state according to the probability 
distribution𝑃 𝑆FG0 	𝑆F .   Fortunately Hidden Markov Models (HMMs) allow us to introduce this 
state dependency across time. Furthermore, it is conceptually trivial to extend a MoG framework 
to a HMM. As the name implies, an HMM is a Markov chain, where each state generates an 
observation vector and may be represented with the following graphical model. 

 

Figure 2: A Hidden Markov Model 

The Markov chain encodes the joint distribution. 𝑃 𝑆 𝑂 = 𝑃 𝑆0 𝑂0 𝑃 𝑆H 𝑂H 𝑃 𝑆I 𝑂I  …  by 
assuming that the value of future states is conditionally independent of the past states, given the 
value of the current state. Given the markovian property, HMMs are quite useful for time-series 
modelling and are immensely well documented machines learning techniques that have been 
employed for large realm of classification purposes. Indeed, this is certainly not the first time 
that HMMs have been used for sleep classification (Doroshenkov, Konyshev, & Selishchev, 
2007; A. Flexer, Sykacek, Rezek, & Dorffner, 2000; Arthur Flexer, Gruber, & Dorffner, 2005).  

The goal in our case is to train the HMM such that we may infer a hidden state sequence given a 
novel set of retrospective observations𝑜0 …	𝑜2. Given a set of training data and observations as 
before (as well as initializations of parameter values), The Baum Welsh algorithm (which is an 



EM algorithm for HMM parameters) can be used to maximize the likelihood of model 
parameters. Once the parameters of the model are optimized, the Viterbi algorithm may be used 
to identify the most likely corresponding state sequence for the observations. An important thing 
to note here is that the central parameter that distinguishes an HMM from a naive MoG classifier 
is it's state transition probability matrix, 𝑃 𝑆FG0 	𝑆F . As there is nothing particularly novel about 
our methods, we refer the curious or unfamiliar reader to some well-written sources that explain 
HMMs and EM in greater detail (BILMES, 2006; Caelli, Amin, Duin, Ridder, & Kamel, 2002; 
Smyth, Heckerman, & Jordan, 1997). As we have done thus far, we will speak to the HMM 
approach only so much as it allows us to clearly explain our methodological approach.  

3.3 Clustered Observation HMM: In addition to the standard HMM approach where each state 
generates one observation vector; we also implemented an HMM classifier where each state 
generates N successive observation vectors. This approach is illustrated in the following 
graphical model: 

 

Figure 3: A graphical model for an HMM with a clustered emission vector.  

In this approach the hidden state, 𝑆FG0, would depend on the previous value of 𝑆FG0 as before, 
but would also generate N consecutive observation vectors. In this case, the probability can be 
written as 𝑃 𝑆 𝑂 = 𝑃 𝑆0 𝑂0 𝑃 𝑆H 𝑂H, 𝑂0 𝑃 𝑆I 𝑂I	, 𝑂H, 𝑂0	 … 	𝑃 𝑆2 𝑂2, 𝑂2J0, …𝑂2JK .	By 
modelling each state as outputting a set of consecutive observation vectors, we will allow our 
classifier to be sensitive to the evolution of observation values, over some time frame as opposed 
to the observation at a single point in time.  

3.4 HMM/EM Parameter Initialization and Choice of Prior:  

The initial choice of HMM parameter values is known to have an impact on the convergence of 
the Baum Welsh algorithm to the actual maximum likelihood parameter values. In our case, we 
randomly initialized these parameter values. We also set the prior distribution over initial states 
as uniform. The EM algorithm was allowed to run for 4 iterations or until convergence. The 
small number of iterations was chosen for the sake of time.  

 



4. Experimental Approach 

4.1 Feature Validation: given the potential perils of improper feature selection mentioned 
above, we began our analysis with validating that the selected features were valid for the purpose 
of the classification task. To do this, we inspected the mean and standard deviation of the 
features, across the non-REM sleep, and awake conditions. Table 1 shows this comparison: 

Feature Mean (sleep/awake) Standard 
Deviation(sleep/awake) 

EEG: alpha .1  / .12 .12 / .15 
EEG:beta .22 / .24  .21 / .27 
EEG:delta .12 / .11 .21 /.36 
EEG:gamma .33 / .20 .29 / .30 
EEG:theta .06 / .20 .13/ .33 
RR Interval 1.09 / .40 .05 /.05 
Median BP .79 / .18  .74 / .36 
Table 1: Mean and standard deviation of features across asleep and awake conditions. 

We notice in Table 1 that our cardiovascular features show very strong differences across the 
two states. This implies that the RR interval and Median BP are indeed good features for this 
binary task. We also notice here that several of the EEG components are similar in terms of their 
means and standard deviations. This caused concern about the validity of our selected EEG 
features.  

To address this concern, we performed a comparison between a simple binary classifier (awake 
vs. non-REM sleep) trained on the raw EEG and cardiovascular waveforms, versus one trained 
using our extracted EEG, and cardiovascular features separately. We trained the feature 
classifiers using 80% of available data, and tested on 20% of the remaining data. We then 
compared the effectiveness of the classifiers according to overall accuracy on classifying novel 
data. See table 2 below for results. 

Classification Approach Non-Rem Sleep Awake Overall Accuracy 
Zheng et al 93% 85% 89% 
Raw waveforms 79% 62% 71% 
EEG Features 98% 45% 72% 
Extracted Cardiovascular features 99% 99% 99% 
Table 2: Comparison of binary classifiers using extracted features versus raw data, versus Zheng et al. 
method. Numbers shown refer to the portion of correctly classified points. 

3.2 Classification using Clustered EEG Observations:  

Having validated the efficacy of our cardiovascular features for classification purpose above raw 
data features and the approach described by by Zheng et al (please see appendix A), the next 
logical step was to see if we could improve the efficacy of the EEG based classifier by utilizing 



the clustered observation approach. To do this we varied the cluster size from 0-15, trained the 
classifier, and computed the classification accuracy for each task on novel data. The results are 
depicted in figure 4 below: 
 

 

Figure 4: Sleep/awake classification using various clustered observation sizes. 

We can see from the figure that the EEG features classifier gains nearly 20% improvement in 
predictive accuracy when utilizing the clustered observation approach. Notice above that the 
overall classification accuracy is maximized for a cluster size of 7, yielding a Non-rem sleep 
state classification of 95%, awake state classification of 87% and an overall classification 
potential of 92%. Figure 4 also illustrates a rather curious phenomenon, as the observation 
cluster size is increased; the classifier is better able to detect the sleep state, and less able to 
detect the awake state.  

3.2 Multi-Class Sleep Stage Classifier using Cardiovascular vs. EEG Features:  

Given the impressive performance of the sleep state classifier which used cardiovascular 
features, we thought it might be more interesting to see how well an EEG versus cardiovascular 



classifier would work for classifying a larger number of sleep-related states. Hence, we decided 
to add two additional states for classification: REM-sleep and Apnea. It is obvious that such a 
classifier is more useful in a realistic clinical context. As before, we trained the classifiers using 
EEG features and cardiovascular features separately utilizing 80% of the available data for 
training, and the remaining 20% for testing. In the binary case, our cardiovascular based 
classifier performed so well that we didn't attempt the more computationally intensive clustered 
observation approach. In this case, we will perform the clustered approach for both to check for 
trends in performance with observation cluster size.  Results are shown in the figure below: 

 

Figure 5: The performance of a multi-class EEG based sleep stage classifier over various 
observation cluster sizes.  

                               Predicted 
Actual  

Awake Non-REM 
sleep 

REM Apnea 

Awake 84% 14% 2% 0% 
Non-REM sleep 0% 88% 7% 5% 
REM 31% 2% 63% 4% 
Apnea 14% 13% 6% 67% 
Table 3: The multi-class EEG based sleep stage classifier's Predicated versus actual class 
performance with a cluster size of 7.   



 

Figure 6: The performance of a multi-class Cardiovascular based sleep stage classifier over 
various observation cluster sizes 

                              Predicted 
Actual  

Awake Non-REM 
sleep 

REM Apnea 

Awake 89% 7% 4% 0% 
Non-REM sleep >1% 98% >1% 1% 
REM 26% 7% 66% >1% 
Apnea 18% 0% 4% 78% 
Table 4: The multi-class cardiovascular based classifier's predicted versus actual class 
performance with a cluster size of 1.  

If we briefly compare the results of figure 5/6, and tables 3/4 we notice immediately that, as 
before, the EEG based features gain in performance for particular cluster sizes. The 
cardiovascular features on the other hand, seem unaffected by changes in cluster size. We also 
notice that, at their best, the cardiovascular based classifier still outperforms the EEG based 
classifier.  

3.2 Multi-Class Sleep Stage Classifier using Cardiovascular and EEG Features:  

The results from section 3.1 demonstrate impressive performance levels, but they still fall short 
of other classifiers in the literature which use the same dataset (Luay et al, 2009). As a final step 
we included both the EEG and cardiovascular features for the classifier and performed the same 



approach as section 3.1. The results for the classifier are shown below and include classification, 
table, performance plots, and the transition matrix for the optimal case. 

 

Figure 7: The performance of a multi-class EEG and cardiovascular based sleep stage classifier 
over various observation cluster sizes. The optimal classification performance occurred at a 
cluster size of 4, and was 93%. 

                               Predicted 
Actual  

Awake Non-REM 
sleep 

REM Apnea 

Awake 97% 3% 0% 0% 
Non-REM sleep 1% 99% 0% 0% 
REM 1% 6% 91% 2% 
Apnea 8% 8% 3% 82% 
Table 5: The multi-class cardiovascular and EEG based classifier's predicted versus actual class 
performance with a cluster size of 4.  

 

 

 



                                        TO 
FROM 

Awake Non-REM 
sleep 

REM Apnea 

Awake 82% 13% 4% 1% 
Non-REM sleep 3% 87% 5% 5% 
REM 1% 1% 86% 13% 
Apnea 13% 2% 3% 82% 
Table 6: Transition Probability Matrix of The multi-class cardiovascular and EEG based 
classifier's with a cluster size of 4.  

The classifier described in Table 5/6 demonstrates that the combination of EEG and 
cardiovascular features significantly improves the performance of the classifier above one which 
utilizes only cardiovascular or EEG features. The transition probability matrix also matches with 
our intuitions. It captures that patients who are awake are more likely to enter Non-REM sleep 
than REM sleep and that patient with Apnea attacks are more likely to wake up than return to 
Non-REM sleep. 

5. Discussion and Future Work 

Our results demonstrate that an HMM framework is an effective means to perform classification 
of hidden features, such as the sleep state of patients. Moreover, our results show that a clustered 
emissions approach, for certain values of N, provides an enhanced ability to perform the 
classification task, especially in the case of EEG features. When we extended our simple binary 
classifier to include the Apnea and REM-sleep states, we were presently surprised with the 
accuracy of the classifier. Indeed, when we compare the results of our classifier to that proposed 
by others in the literature, we see comparable results. 

5.1 Cardiovascular Classification of Sleep State  

Table 2 clearly reflects our observations from Table 1, the large difference in the means of the 
RR Interval and Median BP across the classes makes the cardiovascular features particular 
potent in the binary classification case. To our surprise, the cardiovascular features also perform 
classification rather well in the multiclass case. As a follow up to this study, it may be interesting 
to extract more cardiovascular features and see if we could improve the performance of the 
cardiovascular classifier to an even greater level.     

5.2 EEG Classification of Sleep State 

The EEG signal is known to be closely related to the level of consciousness of the person and the 
C4/A1 lead is often used for sleep state identification. As the activity increases, EEG shifts to 
higher dominating frequency with lower amplitudes. When the eyes are closed, the alpha waves 
are known to dominate the EEG signals, which we observed in our case. We also observed that 
when patients fall asleep, the dominant EEG frequency often decreases. This is one possible 



reason why the clustered observation HMM works better than the non-clustered HMM for the 
EEG case, as it can take these changes as an indicator of a change in state.  

5.3 EEG vs. Cardiovascular Classification 

We noticed that, at their best, the cardiovascular based classifiers always outperformed the EEG 
based classifier. There are several reasons why this might have occurred. Firstly, it is possible 
that our selected EEG features were not encoding pertinent information for the classification 
task. Secondly, we remind the reader that this study employed the use of a single EEG electrode 
across multiple subjects. It is quite possible that slight differences in positioning of the electrodes 
across these subjects introduced noise to the result which attenuated the performance of the EEG 
based classifier. It may be interesting to perform a study with additional electrodes and see to 
what extent an EEG based classifier alone may be improved. 

5.4 Choosing Better Initial HMM Parameters 

Our HMM parameters were initialized randomly, it is therefore possible that the HMM 
parameters were not converging to a global optima. Global optimization grows increasingly 
important as the dimensionality of the feature space increases. Hence, as an eventual extension to 
this project we would like to perform global optimization on our HMM parameters via a multi 
parameter initialization process. 

5.5 Application of Classifier to Existing Databases 

In large part, this classifier was developed to help annotate subjects in the MIMIC-II clinical 
database for the purpose of investigating circadian variation. Given the results we have found in 
this study, we feel comfortable applying this approach for annotation purposes moving forward. 
As we mentioned earlier, one of the key challenges with extending this onto an ICU database is 
that patients are critically ill and may feature activity different than that of their healthy 
counterparts.  
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Appendix A: Zheng et al approach to sleep state annotation:

Figure AXXX: A figure depicting the method for sleep state extraction proposed by Zheng et al. 

Zheng et al utilized a data-driven approach to infer the sleep and wake cycle on a population level using 
the fluctuations of the circadian rhythm. After time series alignment, they computed the average hourly 
signal value. We will refer to these measures as	𝑊E. Next they averaged the values of	𝑊E, across days, to 
create a single 24 hour waveform which represented each subgroup, called	𝑊N. They computed 	𝑊N using 
the following approach: Let ℎP be a vector describing hourly values of the signal on day	𝑖 Then we can 
define the average 24 hour waveform for each subgroup as: 

𝑊N =
ℎP	7

𝑖
 

The sleep state interval was defined as the 8hr window around the minimum of the 𝑊Nwaveform while all 
remaining hours were classified as awake state interval. Given that our dataset was not over a 24 hour 
period, we rescaled the 8 hour timeframe to the average the average amount of time spend sleeping.  
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