
Global Optimization Approaches for Parameter Tuning in
Biomedical Signal Processing: A Focus on Multi-scale Entropy

Mohammad Ghassemi1, Li-wei Lehman1, Jasper Snoek2 and Shamim Nemati2

Abstract

Many algorithms used for the analysis of physiologi-
cal signals include hyper-parameters that must be selected
by the investigator. The ultimate choice of these param-
eter values can have a dramatic impact on the perfor-
mance of the approach. Addressing this issue often re-
quires investigators to manually tune parameters for their
particular data-set. In this study, we illustrate the impor-
tance of global optimization techniques for the automated
determination of parameter values in the multi-scale en-
tropy (MSE) algorithm. Importantly, we demonstrate that
global optimization techniques provide an effective, and
automated framework for tuning parameters of such algo-
rithms, and easily improve upon the default settings se-
lected by experts.

1. Introduction

The increasing use of very large data sets, and the ad-
vent of effective, scalable methods for analyzing them,
have stimulated progress in many fields of research. In
bio-medical research, this trend has been most apparent in
genomics, but large-scale data resources are also beginning
to have significant impact in basic and applied research in
physiology and medicine, in which signal processing plays
a key role [1].

PhysioNet is one example of a research resource for
physiological signal processing [2]. Despite the rich vol-
umes of high resolution waveform and time series data
available in PhysioNet archives, countless research papers
based on PhysioNet’s data resources utilize only sparse,
low-resolution subsets of available high-resolution vital
signs and laboratory measurements(e.g., minimum, max-
imum, or average hear rate and blood pressure over a 24
hours period). This approach may be sub-optimal however
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as recent studies recommend that therapeutic interventions
should not only aim at maintaining patient vitals within
an acceptable static range, but also direct a patients tra-
jectory towards healthy dynamical regimes with enhanced
variability [3, 4].

As of last year, the two most frequently used techniques
for quantifying time series variability in the physiolog-
ical signal processing community were sample entropy
(SE) and approximate entropy (AE) [5]. Multi-scale en-
tropy (MSE) has been described as a more robust alter-
native for quantifying the dynamical activity of a physio-
logical time-series. MSE may be understood as the set of
sample entropy values for a signal which is averaged (or
coarse-grained) over various increasing segment lengths.
As demonstrated by Costa et al. [6], MSE is a more de-
scriptive index of various types of signal variability than
the SE of the original signal alone. A full description of
the multi-scale entropy algorithm and it’s advantages over
SE can be found in [7]

To truly take advantage of MSE, however, requires the
investigator to specify several parameter values, prior to
analysis. These parameters include features which carry
over from SE, such as the length of the sequences to be
compared (commonly denoted m), a similarity threshold
(commonly denoted r) as well as some MSE specific fea-
tures such as the maximum time scale for which the SE is
computed and the step size in the scale [7]. Existing tech-
niques for principled selection of SE and MSE parameters
include brute force and Monte Carlo techniques [8] among
others [9] but manual tuning, or a simple reliance on de-
fault values, is also commonly employed.

We, like others in the community, believe that MSE
and SE should not be a function of unprincipled param-
eter selection. [5, 9]. To address this issue, we pro-
pose use of recent advances in global optimization tech-
niques for the identification of MSE parameters. In this
paper, we directly compare parameters selected by the
Multi-start Scatter-Search [10], Genetic Algorithm and
the Bayesian Optimization [11] approaches to global op-
timization against the default values for MSE on an inten-
sive care unit (ICU) sepsis dataset.
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2. Methods

2.1. Datasets

This study utilized retrospective data from a sub-
set of ICU patients from the publicly available Multi-
parameter Intelligent Monitoring in Intensive Care
(MIMIC) database [12] that matched the definition of sep-
sis and severe sepsis as previously described by Mayaud et
al. [13]. We selected N = 118 patients who had complete
ECG waveforms for their first 24 hours in the ICU. We also
collected the Acute Physiology and Chronic Health Eval-
uation IV (APACHE) scores for the cohort. The average
heart rate (HR) time series over 10 second sliding windows
(with no overlap) were extracted using peak detection with
weighted averaging based on the quality of the individual
heart beat waveform falling within each window.

2.2. Classification via Transductive SVM

The MIMIC ICU population constitute patients from
several care units. Moreover, patients are subjected to a va-
riety of interventions (ventilators, medications, etc.). This
inherent heterogeneity raises an important question: how
can one transfer knowledge about a given patient cohort
to an unseen newly admitted patient? In this work, we
assume that the patient population is made of multiple dis-
tinct clusters, and a new patient may belong to any one of
the existing clusters with different probabilities. To facili-
tate patient classification under these assumptions, we use
a transductive SVM (TSVM) approach to simultaneously
discover patient clusters and classify new patients. First,
each patient is represented by a vector of time series fea-
tures (e.g., MSE coefficients). Next, using an appropriate
similarity kernel (e.g., the radial basis function kernel) we
construct a similarity matrix among the time series, and
perform spectral clustering with automated cluster number
determination via silhouette values [14]. Finally, a sep-
arate SVM classifier is fit to each cluster. Given a col-
lection of SVM classifiers and the associated time series
features (or support vectors) and a new patient time series,
we proceed by estimating a probability that the patient fea-
ture vector belongs to any one of the SVM models. This
is accomplished by calculating its average similarity to the
time series within that model, and normalizing the result-
ing similarity vector. The final classification of the new
patient is a convex combination of the outputs of the in-
dividual SVM classifiers, where weights are given by the
normalized similarities.

2.3. Statistical Analysis

The data was randomly partitioned 10 times into testing
(20%), validation (20%) and training (60%) sets. For each

data partition, we used MSE values as the primary feature
vector. Each training set was utilized to identify the coeffi-
cients for the TSVM classifier which performed optimally
(as measured by AUC) on the corresponding validation set.
The model was then evaluated on an unseen testing set.
We report the statistical properties of these AUC measures
across the 10 partitions.

As a performance baseline, we report AUC measures
which result from selecting the default parameter values
reported on PhysioNet. These were then compared to the
AUC resulting from parameter selection via global opti-
mization. Additionally, we compared the performance of
MSE versus the time series mean and standard deviation
by training the same TSVM model using these variables
as the feature of interest. Lastly, we compared the perfor-
mance of our trained models to a TSVM classifier utilizing
the APACHE score feature provided to our cohort.

2.4. Optimization

2.4.1. Parameters for Optimization

MSE requires the specification of a maximum scale fac-
tor (default: 20), a difference between consecutive scale
factors (default: 1), the length of sequences to be com-
pared (default: 2) and a similarity threshold (default: 0.15).
We determined the optimal setting of these parameters us-
ing the global optimization techniques described below.
Global optimization algorithms typically require the ex-
plicit specification of bounds on possible hyper-parameter
values. These bounds were selected as follows: Max
Scale(1-40), Scale Increase(1-4) r(0.05-0.5), m(1-4). We
performed global optimization on the MSE parameters us-
ing the Multi-start Scatter search algorithm, Genetic Algo-
rithm, and Bayesian optimization approaches. We briefly
describe these methods here but encourage the readers to
refer to the original papers describing these algorithms in
more detail.

2.4.2. Bayesian Optimization

Bayesian optimization is a methodology for global op-
timization that relies on building and querying a relatively
inexpensive probabilistic surrogate of the more expensive
objective function. In general, the surrogate is a Gaussian
process, which when combined with observations yields
a convenient posterior distribution over functions. In-
tuitively, the optimization routine proceeds by exploring
through seeking regions of high posterior uncertainty in
the surrogate and exploiting by evaluating regions with a
promising expected value. At each iteration the routine
proposes a set of hyperparameters that maximizes the ex-
pected improvement over the best result seen. An experi-
ment is run with these hyperparameters and then the surro-
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gate model is updated with the result. This process contin-
ues over several iterations until some threshold is reached,
or a maximal number of iterations surpassed. We followed
the implementation of [11] in our empirical analysis.

2.4.3. Genetic Algorithm

Genetic algorithms are an established method for global
optimization that imitate the process of natural selection.
In this approach, an initial collection of hyper-parameters
are selected, and evaluated according to the objective func-
tion. The performance of each entity regulates it’s prop-
agation into subsequent generations. Genetic algorithms
employ heavy use of randomization and have several pa-
rameters that may be tuned. The genetic algorithm was pa-
rameterized to allow for an infinite number of generations
with a starting population size of 100 and a termination
condition of run-time exceeding 30 minuets. Starting lo-
cation for parameters were drawn from a uniform distribu-
tion over the hyper-cube defining our parameter space. All
other optimization options were chosen following the de-
faults provided by Matlab, and may be found online [15].

2.4.4. Multi-start Scatter Search Algorithm

Like the GA approach, the Scatter Search (ScS) al-
gorithm iteratively establishes a set of possible solutions
starting from a random set of starting location. Unlike
GA, ScS use a deterministic process to identify the mem-
bers of the next generation, such as gradient descent.
Like the genetic algorithm, The Muti-start algorithm was
parametrized to allow for an infinite number of iterations
and a termination condition of run-time exceeding 30 min-
uets. Local minima were identified using constrained non-
linear minimization and the interior point algorithm [16].
All other optimization options were chosen following the
defaults provided by Matlab, and may be found online
[17].

3. Results

Table 1 provides a comparison of the APACHE and
time-series mean and standard deviation features for the
prediction of patient outcome. Table 2 provides a compar-
ison of our method’s predictive performance using MSE
with default parameter values compared to parameters
trained by various global optimization methods. Of the at-
tempted optimization methods, Bayesian optimization pro-
vided the best selection of parameter values and resulting
predictive performance.

In Figure 1 we illustrate the selected parameter values,
and corresponding AUC of each global optimization ap-
proach across the ten testing folds. We highlight that the
variability of the inferred parameter values is not constant

Table 1. A comparison of the APACHE and time-series
mean and standard deviation features for the prediction
of patient outcome. Within each cell, upper values rep-
resent the 50th percentile across folds, with lower values
(in parenthesis) representing the the 25th and 75th per-
centiles.

Time Series
Mean + Std

APACHE
IV

AUC
(Training)

0.56
(0.52 - 0.56)

0.77
(0.75 - 0.79)

AUC
(Testing)

0.54
(0.45 - 0.60)

0.68
(0.55 - 0.77)

Table 2. A comparison of predictive performance using
MSE with default parameter values compared to parame-
ters trained by various global optimization methods. For
each MSE parameter we report their cross-fold mean and
standard deviation (with standard deviation in parenthe-
sis).For the reported AUC, we report the 50th percentile in
the top half of the cell and the 25th and 75th percentiles in
the lower half of the cell.

MSE
(Defaults)

MSE
(Bayesian)

MSE
(Genetic)

MSE
(Multi-Start)

Max
Scale 20 17.62(8.68) 23.54(14.34) 19.03(12.57)

Scale
Increase 1 2.59(0.93) 2.56(1.12) 2.35(0.87)

r 0.15 0.11( 0.07) 0.18(0.15) 0.18(0.1285)
m 2 2.58(0.85) 2.07(0.70) 2.53(0.87)
AUC
(Training)

0.77
(0.73- 0.78)

0.77
(0.69 - 0.79)

0.77
(0.67 - 0.84)

0.73
(0.69 - 0.76)

AUC
(Testing)

0.66
(0.60 - 0.72)

0.72
(0.63 - 0.78)

0.67
(0.44 - 0.78)

0.69
(0.53 - 0.72)

across methods. For all but the m parameter, the estimates
provided by Bayesian optimization are the most tightly
clustered. For the r and Max Scale parameters, the dif-
ference in estimate variability is most apparent.

4. Discussion

There are several important points which are highlighted
by our results. Firstly a comparison of Tables 1 and 2
demonstrates the importance of physiological dynamics
(as measured by MSE) for the prediction of mortality in
the sepsis cohort. When adequately tuned via optimiza-
tion, we see that the MSE features facilitate classification
performance which exceeds that provided by the APACHE
or time-series mean and standard deviation features. This
result is in agreement with the existing literature which
shows that MSE based HR complexity may have a prog-
nostic value beyond time series mean and variance [18].
Importantly, the performance of MSE above the widely
employed APACHE scores highlights the need for severity
of illness metrics which include measures of physiological
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Figure 1. Selected parameter values, and corresponding
AUC of each global optimization approach, across the ten
testing folds.

dynamics.
For MSE to deliver meaningful entropy values across

scales, high resolution waveforms are necessary and this
often stands at odds with many conventional forms of clin-
ical data collection, which sample at resolutions of minuets
or higher. Hence, these results also motivate the value of
high resolution data for prognostication, and patient moni-
toring in critical care settings.

The results in Table 2, clearly illustrate the beneficial
effects of principled parameter selection on model per-
formance. In general, global optimization approaches
are best motivated for objective functions which are both
costly to evaluate and whose performance is sensitive to
parametrization. MSE is just one example of a method
which requires such parametrization. Importantly, related
work has called into question the setting of MSE param-
eter values, and eluded to the potential utility of an opti-
mization approach, which we have now demonstrated [18].
Other commonly employed methods in biomedical signal
processing may also gain from such an approach, whether
it be selecting the number of Gaussian mixture components
used to model a density function, the number of layers in
a neural network, or the number of assumed source signals
in an Independent Component Analysis.

It is important to note that while all three optimiza-
tion approaches yielded parameter sets which resulted in
50th percentile AUC values above those provided by the
defaults, Bayesian optimization was the clear victor, and
the only method which facilitated MSE to outperform the
APACHE score. This result is in line with recent litera-
ture, which has demonstrated the superiority of Bayesian
optimization on several benchmark datasets [11].

The variation in estimated parameters values across our
data folds shown in Fig. 1, illustrates the heterogeneous
nature of ICU patients with homogeneous disease profiles.

If there was a single optimal set of parameters for the entire
cohort we would expect to see higher average AUC val-
ues near specific parameter values. Instead, Fig. 1 shows
great variance in model AUC, across a range of parameter
selections. Importantly, we see that BO was often more
immune to estimate variability than the other approaches.
The max scale and r values inferred by Bayesian optimiza-
tion were far more tightly clustered than those provided
by other methods. This fact, coupled with it’s enhanced
performance may indicate that patient heterogeneity mani-
fests it’s effect in some features of MSE more so than oth-
ers.

It is important to note that for the same computational
cost as measured in run-time, we see greater performance
from BO as compared to the other techniques. These re-
sults however, should be understood in the context of the
hyper-parameters we selected to govern each of the opti-
mization approaches themselves. Indeed, It is likely that
with longer run-times or denser initial sampling of the pa-
rameters space that the GA and Multi-start methods will
converge to increasingly similar values as BO.

In this study, algorithms were executed sequentially but
it is worth highlighting that these techniques are easily
parallelized, which makes them particularly relevant in an
age where massive computational clusters, such as Ama-
zon’s EC2, are increasingly available and affordable for
researchers around the globe.

The importance of this approach extends beyond the im-
mediate scope of this paper. Robust navigation and min-
ing of physiologic time series databases, in general, re-
quires finding similar temporal patterns of physiological
responses. Detection of these complex physiological pat-
terns not only enables demarcation of important clinical
events but can also elucidate hidden dynamical structures
that may be suggestive of disease processes. Some specific
examples where this may also be useful include real-time
detection of cardiac arrhythmia, sleep staging or detection
of seizure onset. In all these cases, being able to identify
a cohort of patients who exhibit similar physiological dy-
namics could be useful in prognosis and inform treatment
strategies. Ultimately, we are hopeful that these results
will encourage others in the biomedical signal process-
ing community to employ global optimization techniques
when performing parameter selection and facilitate more
robust results.

ACKNOWLEDGMENT

We would like to acknowledge the support of the
Salerno Foundation, the James S. McDonnell Foundation,
and the National Institute of Health’s Neuroimaging Train-
ing Program for their generous support of this research en-
deavor.

996


