
Personalized Medication Dosing 
Using Volatile Data Streams

MM	Ghassemi	[1]	,	T	Alhanai [1]	,	MB	Westover	[2]	,	RG	Mark	[1]	,	S	Nemati [3]
1:	Massachusetts	Institute	of	Technology;	2: Massachusetts	General	Hospital,;	3:	Emory	University

NIH	Grants:	T32EB001680,	T90DA22759,	K01ES025445,	R01EB017205,	R01GM104987



Introduction



Personalized medicine: 
A brief history

• 460BC: Personalized medicine 
was envisioned by Hippocrates

• 1990-2003: A surge of interest in 
personalized medicine following 
the human genome project

• 2017: FDA approves record 
number of personalized 
medicines

Allen	Frances,	MD,	Professor	of	Psychiatry,		Duke	University

“It	is	more	important	to	know	the	patient	
who	has	the	disease	than	the	disease	the	
patient	has.”	―	 Hippocrates
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But what is “personalization”



• Static personalization is often 
performed at the level of 
demography 
(e.g. gender, weight)

• Dynamic personalization 
begins with demography, and 
becoming more patient-specific 
as better data and responses to 
treatment are collected 
(e.g. anesthesia control) Ethambutol	Dosing	Suggestions
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Personalized medicine: 
Needs deployable approaches

• Patients and providers have been  
slow to adopt personalized 
medicines, or alter established 
behaviors

• Solutions must work under real-
world, imperfect conditions

• Translational impact will require 
interpretable approaches that 
integrate with provider and patient 
workflows to address high-value 
problems
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• Medication dosing 

• Errors are responsible for 
~400,000 preventable hospital 
deaths each year

• Over- or under- dosing can
• Extended hospital stay,
• Require follow-up interventions,
• Incur additional morbidity.
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• A personalized medication 
dosing policy for a common 
anticoagulant, heparin

• Provide an initial dose based 
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• Provide subsequent doses 
based on real-time, noisy data 
stream 
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Methods



• We extracted 4,470 patients 
from MIMIC who received 
intravenous UFH infusions 
during their ICU stay

• MIMIC is a de-identified, 
publicly available EMR 
archive of 40,000+ unique ICU 
admissions between 2001 -
2016. 

The data
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• Clinicians dose heparin, wait 6-12 hours, measure 
anticoagulation, then adjust dose as needed

• Goal is to obtain a therapeutic level of anticoagulation as quickly 
as possible, as indicated by aPTT

• aPTT may be categorized into one of three states: 
therapeutic, sub-therapeutic, and supra-therapeutic
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• We extracted all 
features that are 
believed to confound 
the relationship 
between UFH and 
aPTT

Clinical Features
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• Continuously 
measured features 
change over time 

• The	value	of	these	
features	are	occasionally	
missing,	or	for	some	
patients	unmeasured

Clinical Features



• Multinomial	logistic	
regression	(MNR)	where	
model	features	and	
parameters	are	re-
estimated	for	each	patient,	
at	each	aPTT	draw	using	a	
weighted	combination	of	
the	data	from	
• a	population	of	existing	
patients,	and	

• the	individual	patient’s	real-
time	data	stream

Proposed Approach
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Where	likelihood	is	a	weighted	combination	of	p and	i data

Method, formally:

Population	versus	individual	data	weight	is	time-dependent

weighting	hyper-parameters
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P(supra)	increases	wrt dose;		P(sub)		decreases	wrt dose;	P(ther)		is	maximum	when:	

Yielding:

Heparin
parameter

Non-heparin	
feature	impact
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overWhere:
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• Baseline 1: Multinomial logistic 
regression using static features, 
without personalization

• Baseline 2: Multinomial logistic 
regression using all features, without 
personalization and excluding subjects 
with missing data (23.6%) of all patients

• Baseline 3: Multilayer neural network. 
Densely connected, feed-forward, two 
hidden layers, softmax output, ReLU
activation, Xavier initialization, scaled 
conjugate gradient descent optimization, 
grid search topology selection.

• Baseline 4: Reinforcement learning 
via deterministic policy network. We 
defined the state, action, and rewards as 
follows: (1) State: aPTT and laboratory 
measures (2) Actions: maintain dose, 
increase dose, decrease dose. (4) 
Rewards: proportional to the aPTT error. 

Non-personalized
baseline methods
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Results



• UFH	misdoing	is	consistently	
error-prone	even	after	
multiple	aPTT	draws	(and	
consequent	opportunities	for	
dose	adjustment).	

• 80%	of	our	sample	stopped	
receiving	aPTT	draws	after	
their	fifth	adjustment	

• 5%	of	the	3,883	patient	with	
recorded	aPTT	values	had	a	
sixth	dose	adjustment.	

Data characteristics

2/3	of	patients	mis-dosed
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• Highest overall accuracy (60%)

• Highest overall VUS (0.46), a 0.02 improvement over the RL approach

• 7.3% more likely to detect supra-therapeutic doses than the population 
model that didn’t exclude patients

Overall performance of 
personalized approach
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Temporal performance of 
personalized approach

Our approach consistently outperformed the best comparable baseline across time



Temporal performance of 
personalized approach

Time	(Hours)

Our approach might reduce errors, and bring patients to therapeutic aPTT, faster.



Conclusion and 
Future Direction
• Heparin	dosing	guidelines	are	
based	on	population	models

• Patient-specific	modeling	has	
the	potential	to	improve	
performance	

• We	are	working	to	deploy	this	
algorithm	within	the	BIDMC	for	
real-world	impact

http://ghassemi.xyz

Questions	and	Collaborations:


