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But what is “personalization”



Personalized medicine:
Two approaches

o Static personalization is often
performed at the level of
demography
(e.g. gender, weight)

* Dynamic personalization
begins with demography, and
becoming more patient-specific
as better data and responses to
treatment are collected
(e.g. anesthesia control)

Drug Dosage Recommendations’ (3)

Table. 4.4
Dose in mg/kg (maximum dosage in parentheses)
Drug | Adults/Children? Daily | 1timeiweeks | 2tmes/ | 3times/
week week
40- 14.5-20 36.4-50 21.8-30
w 55 mg/kg mg/kg mg/kg
® kg (800 mg) (2000 mg) (1200 mg)
i 56- 16-21.4 37.3-50 26.7-35.7
Adults | g 75 mg/kg mg/kg mg/kg
EMB* h kg (1200 mg) (2800 mg) (2000 mg)
t 76| 17.8-21.1 444526 | 26.7-316
90 mg/kg mg/kg mg/kg
kg (1600 mg) (4000 mg) (2400 mg)
. 15-20 mg/kg 50 mg/kg
Sa—— (1000 mg) (2500 mg)

Ethambutol Dosing Suggestions




Personalized medicine:
Two approaches

» Static personalization is often
performed at the level of
demography
(e.g. gender, weight)

* Dynamic personalization f
begins with demography, and ssssess g
becoming more patient-specific —
as better data and responses to
treatment are collected
(e.g. anesthesia control)

Source: Medsteer, http://medsteer.com/



Personalized medicine:
Needs deployable approaches

* Patients and providers have been S et .
Slow 10 adopt personalized The Limits of Personalized

medicines, or alter established Medicine
behaviors

A new study suggests that knowing their genetic risk of disease
doesn't motivate people to change their behavior.

° Solutlons must Work under real_ TIMOTHY CAULFIELD | MAR 16, 2016 m
world, imperfect conditions
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A Very Personal Problem
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Personalized medicine:
Needs deployable approaches

Solution

 Patients and providers have been
slow to adopt personalized
medicines, or alter established
behaviors

 Solutions must work under real-
world, imperfect conditions

 Translational impact will require
Interpretable approaches that
mtegrate with provider and patient
workflows to address high-value
problems

Problem



Personalized medicine:
High value problem

* Medication dosing

 Errors are responsible for
~400,000 preventable hospital
deaths each year

 Over- or under- dosing can
« Extended hospital stay,
* Require follow-up interventions,
* Incur additional morbidity.
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Methods



The data MIMIC

* We extracted 4,470 patients
from MIMIC who received
intravenous UFH infusions
during their ICU stay RDERON  Code (GitHub) ©

* MIMIC is a de-identified,
publicly available EMR
arChlve Of 40,000_'_ Unlque ICU If you use MIMIC data or code in your work, please cite the following

. . publication:
admissions between 2001 -
201 6 - MIMIC-III, a freely accessible critical care database. Johnson AEW,
Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P,
Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35.
Available from: http://www.nature.com/articles/sdata201635
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The outcome

» Clinicians dose heparin, wait 6-12 hours, measure
anticoagulation, then adjust dose as needed

* Goal is to obtain a therapeutic level of anticoagulation as quickly
as possible, as indicated by aPTT

« aPTT may be categorized into one of three states:
therapeutic, sub-therapeutic, and supra-therapeutic
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Features Standard  Missing

. (N= 9684) Mean  pyoviation Data (%)
Clinical Features Static Features

Age 68.01 14.91 0.00

Gender (%Male) 58 - 0.00

ICU Type (%Surgical) 35 - 0.00

e \We exiracted all Ethnicity (% White) 69 - 0.00
End Stage Renal Disease (%) 3 - 0.00

features th at dare Pulmonary Embolism (%) 9 - 0.00

i Continuously Measured Features

be“eved_ to Co_nfOund Heparin Dose (units/kg) 11.79 4.11 6.88
the relationship White Blood Cell Count 1226 635 6.23
Creatinine 1.58 1.48 5.18

between UFH and Carbon Dioxide 2461 467 5.69
aPTT Heart Rate (Mean) 84.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02

Hematocrit 31.50 4.65 4.27

Hemoglobin 10.63 1.66 6.45

Platelet Count 226.76 118.29 5.10

Urea 31.72 23.45 6.03

Temperature (F) 98.28 2.71 7.05

International Normalized Ratio 1.50 1.10 7.03

Prothrombin Time 15.22 3.99 0.12

Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01
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Clinical Features

» Static features are
single measures that
don’t change over time

* These features are
routinely collected
(no missing data)

Features Mean Standard | Missing
(N=9684) Deviation | Data (%)
Static Features

Age 68.01 14.91 0.00
Gender (%Male) 58 - 0.00
ICU Type (%Surgical) 35 0.00
Ethnicity (% White) 69 0.00
End Stage Renal Disease (%) 3 0.00
Pulmonary Embolism (%) 9 0.00
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Features Mean Standard  Missing
C I | n |Ca| Fe at u reS (-N= ‘96_84) Deviation Data (%)
@
CO ntinuous ly Continuously Measured Features
measured features [Heparin Dose (units/kg) 170 41 658
. White Blood Cell Count 12.26 6.35 6.23
change over time Creatinine .58 .48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 84.81 17.12 0.01
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Hemoglobin 10.63 1.66 6.45
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Temperature (F) 08.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01
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measured features Heparin Dose (units/kg) 1179 411 6.88
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* Among several Hematocrit 3150  4.65 4.27
Hemoglobin 10.63 1.66 6.45
Platelet Count 226.76 118.29 5.10
Urea 31.72 23.45 6.03
Temperature (F) 08.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation  97.24 2.65 0.01




Features Standard  Missing

CI | n |Ca| Fea t u reS (N=9684) Mean Deviation Data (%)
] I )
CO ntinuous ly Continuously Measured Features
measured features Heparin Dose (units/kg) 179 411 6.83
. White Blood Cell Count 12.26 6.35 6.23
change over time Creatinine .58 1.48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 84.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
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i Hemoglobin 10.63 1.66 6.45
fe_atqres are occa5|ona||y Platelet Count 226.76 118.29 5.10
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Proposed Approach

Population Model

/- p(sub-therapeutic)

No aPTT Draws / p(supra-therapeutic)

* Multinomial logistic
regression (MNR) where
model features and
parameters are re-
estimated for each patient,
at each aPTT draw using a
weighted combination of
the data from

e a population of existing
patients, and

* the individual patient’s real-
time data stream
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Proposed Approach

Population Model

p(sub-therapeutic) =
p(supra-therapeutic) s

Existing Patient
Population

* Multinomial logistic No aPTT Draws ><
regression (MNR) where

model features and

Individual Model 1
parameters are re-
o . ata
estimated for each patient, ><
. First aPTT Draw
at each aPTT draw using a

weighted combination of
the data from
e a population of existing

patients, and
. . . . B Second aPTT Draw
* the individual patient’s real- ><

time data stream

Individual Model 1

Patient 1
Data




Method, formally:

State Interval Individual Population

S n 1 P

Features Outcome

n n n n

Data Samples

Xn oy oo oy
p Tp GG Yp

Parameters  Data row (p) Data row (i)

n (k) (k) (), ()
(9@', s Xp Yp = X i
84 /y weighting hyper-parameters

Multinomial Logistic Regression, at each interval

Taon
eXi 97;,5
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Where likelihood is a weighted combination of p and i data
T Tp
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Population versus individual data weight is time-dependent
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Method, formally:

P(supra) increases wrt dose; P(sub) decreases wrt dose; P(ther) is maximum when:
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N O n - p e rSO n a.l I y4 ed Features M Standard  Missing

] (N= 9684) “M " Deviation Data (%)
baseline methods  swic Features
Age 68.01 14.91 0.00
« Baseline 1: Multinomial logistic %{r}d{?r (%I;Iasle) cal gg i 888
regression using static features, Type (%eSurgical) - :
without personalization Ethnicity (% White) 69 - 0.00
End Stage Renal Disease (%) 3 - 0.00
- Baseline 2: Multinomial logistic Pulmonary Embolism (%) 0 ) 0.00

regression using all features, without
personalization and excluding subjects
with missing data (23.6%) of all patients

- Baseline 3: Multilayer neural network.
Densely connected, feed-forward, two
hidden layers, softmax output, ReLU
activation, Xavier initialization, scaled
conjugate gradient descent optimization,
grid search topology selection.

- Baseline 4: Reinforcement learning
via deterministic policy network. We
defined the state, action, and rewards as
follows: (1) State: aPTT and laboratory
measures (2) Actions: maintain dose,
increase dose, decrease dose. (4)
Rewards: proportional to the aPTT error.



Non-personalized
baseline methods

« Baseline 1: Multinomial logistic

regression using static features,
without personalization

Baseline 2: Multinomial logistic
regression using all features, without
personalization and excluding subjects
with missing data (23.6%) of all patients

Baseline 3: Multilayer neural network.
Densely connected, feed-forward, two
hidden layers, softmax output, ReLU
activation, Xavier initialization, scaled
conjugate gradient descent optimization,
grid search topology selection.

Baseline 4: Reinforcement learning
via deterministic policy network. We
defined the state, action, and rewards as
follows: (1) State: aPTT and laboratory
measures (2) Actions: maintain dose,
increase dose, decrease dose. (4)
Rewards: proportional to the aPTT error.

Features Mean Standard  Missing
(N=9684) Deviation Data (%)
Static Features

Age 68.01 14.91 0.00
Gender (%Male) 58 - 0.00
ICU Type (%Surgical) 35 - 0.00
Ethnicity (%9White) 69 - 0.00
End Stage Renal Disease (%) 3 - 0.00
Pulmonary Embolism (%) 9 - 0.00
Continuously Measured Features

Heparin Dose (units/kg) 11.79 4.11 6.88
White Blood Cell Count 12.26 6.35 6.23
Creatinine 1.58 1.48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 84.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
Hematocrit 31.50 4.65 4.27
Hemoglobin 10.63 1.66 6.45
Platelet Count 226.76 118.29 5.10
Urea 31.72 23.45 6.03
Temperature (F) 08.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation ~ 97.24 2.65 0.01




Non-personalized
baseline methods

« Baseline 1: Multinomial logistic
regression using static features,
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« Baseline 2: Multinomial logistic
regression using all features, without
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- Baseline 3: Multilayer neural network.
Densely connected, feed-forward, two
hidden layers, softmax output, ReLU
activation, Xavier initialization, scaled
conjugate gradient descent optimization,
grid search topology selection.

- Baseline 4: Reinforcement learning
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defined the state, action, and rewards as
follows: (1) State: aPTT and laboratory
measures (2) Actions: maintain dose,
increase dose, decrease dose. (4)
Rewards: proportional to the aPTT error.
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Densely connected, feed-forward, two
hidden layers, softmax output, ReLU
activation, Xavier initialization, scaled
conjugate gradient descent optimization,
grid search topology selection.

- Baseline 4: Reinforcement learning
via deterministic policy network. We
defined the state, action, and rewards as
follows: (1) State: aPTT and laboratory
measures (2) Actions: maintain dose,
increase dose, decrease dose. (4)
Rewards: proportional to the aPTT error.




Results



Data characteristics

* UFH misdoing is consistently
error-prone even after
multiple aPTT draws (and
consequent opportunities for
dose adjustment).

* 80% of our sample stopped
receiving aPTT draws after
their fifth adjustment

* 5% of the 3,883 patient with
recorded aPTT values had a
sixth dose adjustment.

Number of Subjects

3500

3000

2500

2000

1500

1000

500

supratherapeutic

therapeutic

subtherapeutic

unknown

1

2

2/3 of patients mis-dosed




Data characteristics

 UFH misdoing is consistently
error-prone even after
multiple aPTT draws (and
consequent opportunities for
dose adjustment).

* 80% of our sample stopped
receiving aPTT draws after
their fifth adjustment

* 5% of the 3,883 patient with
recorded aPTT values had a
sixth dose adjustment.

Number of Subjects

3500

3000

2500

2000

1500

1000

500

supratherapeutic

therapeutic

subtherapeutic

unknown

2




Data characteristics

 UFH misdoing is consistently
error-prone even after
multiple aPTT draws (and
consequent opportunities for
dose adjustment).

* 80% of our sample stopped
receiving aPTT draws after
their fifth adjustment

* 5% of the 3,883 patient with
recorded aPTT values had a
sixth dose adjustment.

Number of Subjects

3500

3000

2500

2000

1500

1000

500

supratherapeutic

therapeutic

subtherapeutic

unknown

2




Data characteristics

 UFH misdoing is consistently
error-prone even after
multiple aPTT draws (and
consequent opportunities for
dose adjustment).

* 80% of our sample stopped
receiving aPTT draws after
their fifth adjustment

* 5% of the 3,883 patient with
recorded aPTT values had a
sixth dose adjustment.

Number of Subjects

3500

3000

2500

2000

1500

1000

500

supratherapeutic

therapeutic

subtherapeutic

unknown

2




Data characteristics

 UFH misdoing is consistently
error-prone even after
multiple aPTT draws (and
consequent opportunities for
dose adjustment).

* 80% of our sample stopped
receiving aPTT draws after
their fifth adjustment

* 5% of the 3,883 patient with
recorded aPTT values had a
sixth dose adjustment.

Number of Subjects

3500

3000

2500

2000

1500

1000

500

supratherapeutic

therapeutic

subtherapeutic

unknown

2




Data characteristics

 UFH misdoing is consistently
error-prone even after
multiple aPTT draws (and
consequent opportunities for
dose adjustment).

* 80% of our sample stopped
receiving aPTT draws after
their fifth adjustment

* 5% of the 3,883 patient with
recorded aPTT values had a
sixth dose adjustment.

Number of Subjects

3500

3000

2500

2000

1500

1000

500

supratherapeutic

therapeutic

subtherapeutic

unknown

2




Overall performance of
personalized approach

 Highest overall accuracy (60%)
* Highest overall VUS (0.46), a 0.02 improvement over the RL approach

» 7.3% more likely to detect supra-therapeutic doses than the population
model that didn’t exclude patients



Overall performance of
personalized approach

» Highest overall accuracy (60%)
 Highest overall VUS (0.46), a 0.02 improvement over the RL approach

» 7.3% more likely to detect supra-therapeutic doses than the population
model that didn’t exclude patients



Overall performance of
personalized approach

» Highest overall accuracy (60%)
* Highest overall VUS (0.46), a 0.02 improvement over the RL approach

« 7.3% more likely to detect supra-therapeutic doses than the population
model that didn’t exclude patients



Temporal performance of
personalized approach

Our approach consistently outperformed the best comparable baseline across time

0.8 Predicting Therapeutic Predicting Underdose Predicting Overdose

\ Individual

+ Population

AUC on Remaining Patients
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Temporal performance of
personalized approach

Our approach might reduce errors, and bring patients to therapeutic aPTT, faster.
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Conclusion and
Future Direction

* Heparin dosing guidelines are
based on population models

 Patient-specific modeling has
the potential to improve
performance

* We are working to deploy this
algorithm within the BIDMC for
real-world impact

Questions and Collaborations:

http.//ghassemi.xyz



